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ABSTRACT

Core body temperature (CBT) is an important health indicator that denotes the tem-
perature of the body core, and maintains brain and organ function. Invasive methods
of CBT measurement pose challenges in assessing and monitoring human health. To
address this, estimation of tympanic membrane temperature using multiple biologi-
cal parameters often referenced for CBT has been attempted in previous studies. Our
research focused on machine learning-based CBT estimation using hand-measurable
biological data. Furthermore, while various studies have investigated machine learn-
ing models and the impact of information acquisition environments, few have com-
pared the estimation accuracy of different biological parameters or assessed optimal
feature combinations. Our proposed method entails the evaluation of indices in both
normal scenarios with all variables and patterned scenarios with varying combinations
of reduced explanatory variables. The comparison results reveal that when estimating
the CBT based on skin conductance and pulse wave intervals excluding skin temper-
ature, the mean absolute error, coefficient of determination, and root mean square
error were 0.17 ◦C, 0.71, and 0.24 ◦C, respectively. This suggests that our approach
is a feasible CBT estimation method that does not rely on skin temperature, although
accuracy concerns persist. Furthermore, the estimation of the difference between CBT
and skin temperature suggests that the estimation method may have accounted for
individual variations within the data. Implementing the proposed method in increas-
ingly popular smart rings and watches could facilitate the acquisition of CBT in daily
life.
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INTRODUCTION

Core body temperature (CBT) is the temperature of the body core, includ-
ing the brain and organs, and is an indicator of circadian rhythms. Recent
research has revealed the correlation between CBT and daily biological
rhythms, highlighting the importance of consistent CBT monitoring in our
increasingly diverse modern lifestyles.

CBT is measured by inserting a thermometer into a body cavity, such as
the rectum or sublingual cavity; however, this method is invasive and imposes
a major physical burden on patients. Non-invasive methods for CBT mea-
surement involve the use of sensors that operate via the heat flux method.
Although these sensors can accurately measure fine fluctuations in the CBT,
they are not widely used and are expensive and time-consuming to install.

To address these issues, numerous attempts have been made to estimate
the tympanic membrane temperature, a CBT index, using multiple biomet-
ric data. In a study on estimation using this method in a hot environment,
the CBT was estimated by obtaining the metabolic rate based on the heart
rate and skin temperature. Another study on CBT estimation using the same
method was performed by obtaining biometric information from sensors
worn during exercise, accounting for various exercise loads. In another study,
thermal images obtained using an infrared thermography camera were used
to build amachine learning estimationmodel. Using a simple thermal imaging
camera as an example, a CBT estimation model was constructed by learn-
ing a combination of the body surface temperatures of the forehead, cheeks,
neck, and other facial regions, as well as the ambient temperature and body
mass index. However, CBT estimation using models of heat transfer inside
and outside the body involves many parameters and is often computationally
time-consuming, making it impractical. Although thermal imaging cameras
can make noncontact measurements and are becoming increasingly smaller,
they remain uncommon and are not intended for everyday use by consumers.

Therefore, we believe that it is important to obtain biometric informa-
tion without the need for complex calculations or large-scale equipment. The
main objective of our research is to estimate CBT via machine learning using
biometric information that can be measured from the hand. In the proposed
method, the hand skin temperature (ST), skin conductance response (SCR),
and blood volume pluse (BVP) measured by sensors attached to the fingers
and palms were used as explanatory variables, and support vector regression
(SVR), a machine learning method, was employed. During preprocessing, fea-
tures were extracted based on the peak to peak interval (PPI) derived from
the BVP. Furthermore, because the acquired biometric information showed
temporal variations, lags were considered as explanatory variables. Although
many studies have focused on machine learning models and environmen-
tal changes in which biological data are collected for CBT estimation, few
have compared the estimation accuracy of different biological parameters
or evaluated the optimal combination of features. Therefore, in this study,
we compared the estimation accuracy in the standard conditions using three
explanatory variables and a pattern in which the number of features was
reduced and the combination of features varied.
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MULTIVARIATE DATASETS OF A BIOLOGICAL INFORMATION IN
PREDICTING CBT

According to Gagge’s two-node model, many biological indicators can be
used to obtain the CBT. Among them, skin blood volume, which changes
based on perspiration and pulsation, is significantly related to the dissipa-
tion and production of heat in the human body and can be easily obtained
from the hand, as in our proposed method. In this study, ST, SCR, and BVP
served as biometric information, constituting a multivariate dataset from the
perspective of heat transfer in the human body.

Figure 1 shows the environment used in the experiment. The experimental
subjects were 10 healthy Japanese males in their twenties, and the training
data for the proposed method were collected. The experiment was conducted
in a room with an average temperature of 25 ◦C and an average humidity of
approximately 50%. The participants remained seated and at rest for 15 min,
avoiding any activity that would cause a sudden change in CBT. The purpose
of the experiment was explained to the participants and informed consent
was obtained in advance. This study was approved by the Ethics Committee
of Saitama University (approval number: R4-E-53).

ST, BVP, and SCRwere measured using a multi-physiological measurement
system (NeXus10MARK II). The CBT,which is the true value, was measured
using a continuous-measurement ear infrared thermometer (BioLog).

The acquired biological data was pre-processed based on BVP. Thermoreg-
ulation of the human body is governed by the autonomic nervous system,
which consists of sympathetic and parasympathetic nerves. The central ner-
vous system, which regulates cardiac function, alters the heart rate and blood
pressure via autonomic nerves to regulate body temperature according to the
situation. Heart rate variability is one of the most frequently used biologi-
cal metrics in autonomic nervous system analysis, and is based on the R-R
Interval (RRI)—the interval between the R wave (the peak point on the elec-
trocardiogram) and the next R wave. Because the autonomic nervous system
is related to the body temperature regulation mechanism, feature extrac-
tion based on the RRI is considered effective for CBT estimation. However,
because it is difficult to obtain this information from a hand-worn sensor,
we used the PPI calculated from the BVP instead of the RRI. Although the
two are not strictly identical, examples of autonomic nervous system evalu-
ation using pulse rate variability instead of heart rate variability have been
reported.

Additionally, the peak wave (a-wave) value obtained from the BVP was
used as a feature value for training. Because this is synonymous with the
wave generated by the difference between systolic and diastolic blood pres-
sure (pulse pressure), BVP can be paraphrased as a vascular propagating wave
of pulse pressure.

Because the wave indicates the rising edge of the propagating wave, it is
considered to have a high correlation not only with the timing of pulse pres-
sure changes but also with the contractility of the heartbeat, which is related
to fluctuations in the blood flow rate. As mentioned above, because body
temperature is regulated via adjustment of the heart rate and blood pressure,
the wave is expected to be a characteristic quantity that effectively explains
CBT.
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Figure 1: Example of measuring biological data.

Therefore, in this study, three variables, a-wave, ST, and SCR, were used
as feature values when the pulse-wave peak point occurred (Figure 2). Subse-
quently, lags were considered as explanatory variables to reflect the temporal
variability and patterns of the extracted biological data. Lagged features
involve the use of historical data as input variables to consider the time-series
characteristics. As shown in Table 1, we used time-series data from t-3, t-2,
and t-1 for the predicted value of the t-th CBT for a total of nine features as
input variables.

BUILDING THE MACHINE LEARNING MODEL USING
HAND-MEASURABLE BIOLOGICAL INFORMATION

Because the temperature of the deep layer, the region of the body where the
CBT exists, is affected by temperature changes in multiple thermoregulatory
mechanisms, the relationship between body surface temperature and CBT
is nonlinear. Therefore, SVR was used as the machine learning method in
this study. SVR is considered an effective learning method for estimating
CBT because it can construct a nonlinear regression model using the ker-
nel method. It is a machine learning method that applies a support vector
machine, represented by the kernel method, to the regression problem. The
SVR regression equation is shown in Equation (1).

f (x) =
l∑

i = 1

(
α∗i − αi

)
K(xi xj) + b (1)

Figure 2: Extraction of feature values.
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Table 1. Lag features.
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where α∗i and αi are Lagrange multipliers, which are trained to fall within
the range 0 ≤ α∗i ≤ C and 0 ≤ αi ≤ C; C is the regularization factor,
a hyperparameter to adjust the model complexity; and K(xi xj) is a kernel
function representing the inner product, as shown in Equation (2).

K(xi xj) = φ (xi) φ
(
xj
)T (2)

where φ represents a nonlinear mapping. The SVR learns by transforming
explanatory variables into a linear problem through nonlinear mapping. In
this case, an inner-product calculation for the transformed data is required.
The higher the dimensionality of the space, the more complex the compu-
tation becomes; however, learning can be facilitated by replacing Equation
(2) with an arbitrary function that satisfies positive stationarity. Various
functions can be substituted for the kernel function, with typical examples
including linear, polynomial, and Gaussian kernels (RBF). In this study, the
RBF shown in Equation (3) was used. RBF is a kernel function that excels in
nonlinear data analysis, and γ is a hyperparameter.

K(xi xj) = exp
(
−γ

∥∥xi − xj∥∥2) (3)

SVR reduces the error between the objective variable y and regres-
sion model f (x) for the training data using the loss function rε shown in
Equation (4).

rε =

 y− f (x)− ε
(
ε ≤ y− f (x)

)
0

(
−ε ≤ y− f (x) < ε

)
−
(
y− f (x)

)
− ε

(
y− f (x) < −ε

) (4)

The ε is the sensitivity coefficient. Equation (4) reduces the amplitude of
the loss value compared to the least-squares method, which uses the squared
error as the loss function, and thus prevents the overestimation of out-
liers. Moreover, because there is no penalty for errors below ε, a nonlinear
regression model that considers random noise in the data can be constructed.

EVALUATION METHODS AND METRICS

Many studies on CBT estimation have compared estimation accuracy when
the environment in which biological data are collected varies, and many
studies have examined learning model methods. However, few studies have
evaluated combinations of features and compared the estimation accuracy
for each feature. Therefore, to evaluate the estimation accuracy, we com-
pared the evaluation indices when one of the explanatory variables (ST, SCR,
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or a-wave) was reduced. The timing of feature extraction was based on PPI,
and the features were lagged. The explanatory variables ST and CBT repre-
sent temperature, and because of their numerical proximity, the correlation
between them is considered to be significantly high. Therefore, to consider the
possibility that CBT is learned based on ST, we used the difference between
CBT and ST as the objective variable rather than CBT alone and examined
patterns in which the influence of ST was eliminated.

The dataset used in this study was 11814, 80% of which was training
data and 20% was test data to check accuracy. The three hyperparameters,
C, γ , ε were cross-validated in 5 parts from {10−2, 10−1, 100, 101, 102} and
the optimal parameters were selected by grid researching the hyperparame-
ters. The model with the lowest mean absolute error (MAE) among the five
validated models was selected. The MAE, root mean square error (RMSE),
and coefficient of determination (R2) were used as indices to evaluate the
CBT estimation results. Smaller MAE and RMSE values indicated a more
accurate model.

RESULTS

The learning results of the CBT estimation model were calculated based on
the test data. Tables 2 and 3 show the evaluation indices for each feature and
objective variable. Figure 3 shows the scatter plot when CBT is the objective
variable, and Figure 4 shows the scatter plot when the difference between
CBT and ST is the objective variable.

Regardless of the target variable, the results when all features were used
showed the highest estimation accuracy, whereas the combination of ST
and SCR showed the second highest estimation accuracy after learning with
all features. Overall, the estimation models with a-wave features exhibited
higher accuracy. However, learning with only the a-wave as a feature showed
significantly lower accuracy.

When CBT was used as the objective variable, all feature combina-
tions with SCR yielded robust evaluation results. Estimation from sin-
gle features had the lowest accuracy for ST, whereas estimation from
other features also had a low overall coefficient of determination. How-
ever, when the difference between CBT and ST was used as the objective
variable, all feature combinations using ST showed excellent evaluation
results.

Table 2. Evaluation results of the CBT estimation model for each feature.

Feature Object Variable Hyperparameter Evaluation Function

C γ ε MAE [◦C] RMSE [◦C] R2

ST, SCR, a-wave CBT 10 1 0.1 0.078 0.12 0.92
ST, a-wave CBT 1 10 0.1 0.18 0.29 0.58
SCR, a-wave CBT 1 10 0.1 0.17 0.25 0.69
ST, SCR CBT 10 10 0.1 0.083 0.14 0.91
ST CBT 1 10 0.1 0.26 0.37 0.30
SCR CBT 1 10 0.1 0.18 0.25 0.68
a-wave CBT 0.1 100 0.1 0.25 0.33 0.45
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Table 3. Evaluation results of the model to estimate the difference between CBT and
ST for each feature.

Feature Object Variable Hyperparameter Evaluation Function

C γ ε MAE [◦C] RMSE [◦C] R2

ST, SCR, a-wave CBT−ST 10 1 0.1 0.083 0.13 0.98
ST, a-wave CBT−ST 1 10 0.1 0.19 0.30 0.94
SCR, a-wave CBT−ST 1 10 0.1 0.52 0.75 0.60
ST, SCR CBT−ST 10 1 0.1 0.087 0.14 0.98
ST CBT−ST 1 10 0.1 0.26 0.37 0.90
SCR CBT−ST 1 10 0.1 0.58 0.82 0.53
a-wave CBT−ST 0.1 100 1 0.87 1.04 0.23

Figure 3: CBT estimation results for each feature.

Figure 4: CBT-ST estimation results for each feature.
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DISCUSSION

According to the learning results, the highest estimation accuracy was
obtained when ST, SCR, and a-waves were used, suggesting that feature
extraction based on PPI and datasets using a-waves related to myocardial
contractility may be useful for CBT estimation. As CBT is typically 0.5–1 ◦C
higher than ST, it is practically acceptable to be able to estimate it with MAE
less than 0.1.

Furthermore, the estimation accuracy was high when ST and SCR were
used as explanatory variables. Because the accuracy of both variables cannot
be said to be good when they are used alone as explanatory variables, the
information necessary for the estimation is extracted as features when the
two are combined.

Moreover, when the CBT is estimated from the SCR and a-waves, theMAE
is 0.17 ◦C. Although accuracy remains an issue, CBT can be estimated with-
out using ST. This experiment was conducted under steady-state conditions,
and it was assumed that the priority of features based on temperature change
was low. Therefore, the applicability of this study is likely to be limited; how-
ever, estimation from information excluding ST is also considered effective
under steady-state conditions.

Table 4 shows the MAEs of previous studies that estimated the same
tympanic membrane temperature as that used in this study using the CBT.

As shown in Table 4, estimations using the proposed model had smaller
error than those reported in previous studies. However, the environment
in which the biometric information was obtained differed from that of the
present study, and we need to prove the effectiveness of the model in all
environments in the future.

Finally, based on the results with the best estimation accuracy for each
objective variable, we verified whether the model was linearly learned with
respect to ST. Figure 5 shows the 15-min change in ST and CBT for one exper-
imental collaborator, and Figure 6 shows the average ST and CBT for each of
the 10 collaborators. Figures 7 and 8 show the scatter plots of the estimated
and measured values of ST and each objective variable during learning, with
all features as explanatory variables.

Table 4. Comparison with previous studies.

Biological information Acquisition environment Estimation
method

MAE [◦C]

Facial skin temperature, BMI,
Ambient temperature

Daily environment
(when in the same place
for more than 30
minutes)

Linear multiple
regression

0.13

Facial skin temperature Laboratory
(Data acquired over a
period of one year)

Sensitivity
analysis, SVR

0.18

Skin temperature, heartbeat
count, ambient temperature,
humidity, environmental
information (sunlight, wind,
effect of hydration)

Diverse exercise load
conditions

Gagge’s 2-node
model

0.24
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Figures 5 and 6 show that CBT was almost constant in relation to ST
fluctuations and that the difference between ST and CBT showed significant
individual differences.

Figure 7 shows that CBT distribution was constant over the ST distribution
range, and clusters were observed at the plot points. These clusters were likely
to be plots for the same person. Furthermore, according to the estimation
results shown in Table 2, the accuracy of CBT estimated from ST alone was
low, suggesting that the features for identifying clusters were extracted from
explanatory variables other than ST to estimate CBT.

Figure 8 shows that the difference between CBT and ST was estimated
from the distribution range of ST, and the tendency of the variables ST and
stationary CBT was more pronounced. ST and the difference (CBT-ST) were
correlated, and clusters such as those identified in Figure 7 were no longer
present. Therefore, it is possible that in the difference estimation, the ST
features became larger and that features other than those related to the iden-
tification of clusters were also extracted in the learning process. Furthermore,
as the estimation varied within the range of ST from 33.0 to 34.2 ◦C in
both cases, and that the stationarity of CBT may have affected the learning
results, further study is needed in environments where large CBT temperature
fluctuations occur.

CONCLUSION

In this study, CBT was estimated via machine learning using biometric data
acquired from a hand-worn device. ST, SCR, and a-wave were used as
explanatory variables and features were extracted based on PPI and lagged.
The machine-learning method used was SVR, which accounts for nonlinear-
ities in the data. To verify the accuracy of CBT estimation for each feature,
we reduced one of the explanatory variables and compared each evaluation
index. Furthermore, by focusing on the linearity between ST and CBT, we
verified the use of CBT as the objective variable and the estimation of the
difference between CBT and ST. Differences were found in the extraction of
features for estimation in both cases. In both cases, good estimation accuracy
was achieved when all explanatory variables were used, and the estimation
accuracy of the model using only ST and SCR was high.

Figure 5: Time series of ST and CBT.
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Figure 6: Each average of ST and CBT.

Figure 7: Relationship between ST and CBT.

Figure 8: Relationship between ST and CBT difference.

When CBT was used as the objective variable, the estimation results,
excluding ST as the explanatory variable, suggested the applicability of the
model, although some accuracy issues remained. This is thought to be because
the features for identifying clusters were extracted from explanatory variables
other than ST, and the CBT was estimated.
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This method can be used to easily obtain CBT from the hand and can be
implemented in smartwatches and smart rings. However, because the appli-
cability of this model is limited, it must be validated by measuring biometric
data under different acquisition environments, such as hot environments or
during exercise.
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