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ABSTRACT

Due to staff shortages among physiotherapists and an ageing society, there is a grow-
ing need for the dynamic development of robot-aided rehabilitation. An ideal solution
is a therapy conducted remotely, requiring minimal supervision by a physiotherapist,
thus saving time and increasing the number of people treated. To achieve this, a reha-
bilitation device equipped with intelligent systems to detect dangerous situations for
patients is essential. The paper presents a methodology for constructing a predictive
model for a control system dedicated to home kinesiotherapy with an exoskeleton.
It involves NARX-type recurrent neural networks based on the patients’ electromyo-
graphic (EMG) measurements while exercising. Within the study, simultaneous EMG
measurements and motion capture of the upper extremity were performed on three
participants. The collected data were divided into sets for learning and testing neural
networks. The kinematics was calculated using a multibody model of the upper limb
with five degrees of freedom. The position data obtained from markers were con-
verted into joint angles. Subsequently, a neural network was modelled in MATLAB,
with the EMG measurements as inputs and the rotation angles in the upper limb joints
as outputs. A sequence of movements covering the entire workspace of the upper limb
was adopted as the network training set, while the network’s performance was eval-
uated based on trajectory data from five simple exercises. The reported accuracy of
the results remained within the range of 0.05-1◦. The study revealed differences in
the quality of the result depending on whether the participant of the exercise changes
between the training and validation. To optimize predictions and reduce computation
time, several different networks with varying parameters were constructed, trained
and compared. The quasi-optimal parameters of the models were identified, includ-
ing the number of hidden neurons, samples of previous output signal values, and
samples of prior input signal values.
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INTRODUCTION

Most of the currently available rehabilitation devices are stationary and
hence, permanently set up in rehabilitation clinics. Their use requires the
constant presence of a physiotherapist onsite. They can relieve the exercise
burden on the rehabilitation therapist, for whom a therapy session is often
a significant physical effort (Falkowski, 2022b), and turn the therapy more
entertaining (Levac, 2012).

Due to the limited number of medical staff and the ageing of society (Atif,
2021), there are not enough physiotherapists to guarantee regular home
visits to patients who require these. Thus, rehabilitation robots can poten-
tially solve the problem of missing professionals and improve the quality of
therapy. However, they are not the answer to most of the challenges of self-
use, which emerged during the COVID-19 pandemic. The interruption or
reduction in the intensity of therapy negatively impacts the patient’s health
(Gutenbrunner, 2020). As the world seeks to automate and maximize effi-
ciency and convenience, it is desirable to create solutions for rehabilitation
that are remote and accessible anytime from anywhere in the world (Musleh,
2022).

Nevertheless, technology that interacts directly with humans, such as
rehabilitation robotics, must meet strict safety criteria before being imple-
mented without supervision (Munoz, 2019). Rehabilitation robots can fulfil
this requirement by equipping them with safety systems that adapt to the
individual patient’s needs, in line with the trend of personalized medicine
(Maughan, 2017). In kinesiotherapy of the extremity, the patient has to
be prevented from entering dangerous configurations out of their range of
motion. This can be realized by predicting the extremity’s kinematics in
advance.

The idea presented in this article is to use recurrent neural networks
(RNNs) (Pascanu, 2013), (Falkowski, 2022) based on electromyographic
(EMG) recordings (Tabbori, 2020) to predict the positions of characteristic
points of the upper extremity while exercising. Position prediction will occur
before a hazardous situation occurs to react in advance and prevent them.
This control system is ultimately to be used in the ExoReha exoskeleton,
which is being developed at the Łukasiewicz Research Network – Indus-
trial Research Institute for Automation andMeasurements PIAP (Falkowski,
2023), (Falkowski, 2022a), (Falkowski, 2020). To prove the presented
concept, an experiment without the use of any rehabilitation robot was con-
ducted. This includes real-life data collection and comparison of the different
architectures of RNNs. The study aimed to validate whether it is possible to
design amodel predicting the system’s behavior at least one second in advance
with satisfactory accuracy.

METHODOLOGY

The study validates the applicability of the prediction model correlating real-
life EMG and joint angles of the upper extremity. For this purpose, EMG and
the upper extremity characteristic point motion were tracked simultaneously
while performing specific movements.
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The EMG data were collected from six muscle parts: biceps (lat.musculus
biceps brachii), triceps (lat. musculus triceps brachii), pectoralis major (lat.
musculus pectoralis major), quadriceps (lat. musculus trapezius), and shoul-
der muscle (lat.musculus deltoideus), distinguishing between the middle and
posterior parts (Leis, 2000). To do so, sixMyoWareMuscle Sensorswere used
for data collection. They recorded raw signals but also pre-filtered them. The
data were collected at a sampling rate of 3000 times per second and then
filtered was post-processed with a 50 Hz clipping filter, a fourth-order high-
pass Butterworth filter with a 20 Hz cut-off frequency, and a fourth-order
low-pass Butterworth filter with a 500 Hz cut-off frequency (Yin, 2020). The
collected data was then assigned to a float variable type and normalized by
dividing each measurement by 4096 - resulting in values between 0 and 1.

The characteristic points were measured with 32 high-speed cameras
(200 fps). They were tracking the Cartesian position of twelve markers
placed, as shown in Figure 1. Then, they were recalculated to the joint angles
with a five-degree-of-freedom kinematic model (see Figure 2) and normal-
ized by dividing by the maximum values reached. The joints represent the
following motions: shoulder abduction/adduction (ϕ1), shoulder flexion/ex-
tension (ϕ2), shoulder rotation (ϕ3), elbow flexion/extension (ϕ4), and elbow
rotation (ϕ5). The values correspond directly to the rotation of exoskeleton
motors’ shafts.

Figure 1: Placement of markers.

Three participants completed a calibration phase involving randomized
movements covering the entire range of motion of the elbow and shoulder
without any additional load. They were repeating the standardized routine
presented simultaneously in the video. Following, they performed five simple
exercises:
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1. Arm extension with elbow flexion upwards;
2. Reaching the opposite arm;
3. Shoulder blade pull with elbow extension;
4. Overhead claps with elbow flexion;
5. Arm circles in front of the body.

Figure 2: Applied kinematic model.

These were performed at two different paces (fast or slow) and with vary-
ing loads (no load, 0.5 kg load, or 1.5 kg load). The loads were supposed
to simulate possible differences in individual dynamics of the extremity to
design a robust model.

NEURAL NETWORK MODELLING

Recurrent neural networks were modelled in Matlab software with the Neu-
ral Net Time Series toolbox. They were all based onNonlinear Autoregressive
with Exogeneous Input (NARX) architecture, enabling prediction based on
current and prior states. The six input signals were EMG for every muscle
group, while the outputs were five degrees of freedom (refer to the example
model in Figure 3).

Figure 3: Example neural network model.
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Within the training process, the Levenberg-Marquardt optimization algo-
rithm was used. The inputs were normalized to the range of 0 to 1, while
the outputs were normalized to the range of -1 to 1, as described before. The
training dataset was randomly divided into three subsets: training (70%),
validation (15%), and test (15%). The hidden neurons have sigmoidal, while
the output neurons have linear activation functions.

RESULTS AND DISCUSSION

As part of the search for optimal neural network parameters, various net-
works were trained on the same learning set. Initially, the networks with
only different numbers of neurons in the hidden layer (5 to 10) were con-
structed. After analyzing the results to select the best-performing network,
the impact of changing the horizon values was tested. Table 1 presents the
results obtained by all the analyzed networks on the whole dataset - when
predicting waveforms from the participant on which it was trained and while
predicting for another participant. The “Network Name” column contains
the code representing the neural network’s parameters, where the first two
digits indicate the length of the EMG horizon, the next two digits indicate
the angle value horizon, and the last two digits indicate the number of hidden
neurons.

Table 1. Prediction results obtained by each network.

Network
name

Learning set Same participant Another participant

Average
difference
[◦]

Maximum
difference
[◦]

Average
difference
[◦]

Maximum
difference
[◦]

Average
difference
[◦]

Maximum
difference
[◦]

501005 0.00001 0.00003 −0.0014 1.2970 0.0019 2.7813
501006 0.00009 0.00002 −0.0013 1.2977 −0.0022 2.7817
501007 0.00002 −0.00003 −0.0010 1.2969 −0.0017 2.6919
501008 0.00002 −0.00003 0.0007 1.0856 −0.0015 2.4907
501009 0.00001 −0.00001 0.0001 0.8891 −0.0012 2.1907
301009 0.00001 0.00002 −0.0008 1.2982 0.0016 2.7675
501010 0.000005 0.00002 0.0001 0.8033 −0.0012 2.0904
301007 0.00002 0.00003 −0.0006 1.0972 0.0016 2.8750
301010 −0.00005 0.00002 0.0007 0.8864 −0.0011 2.6828
701010 0.000003 0.00001 0.00008 0.7841 −0.0015 2.1707
500510 0.000007 0.00003 0.0002 0.9765 3.6601 41.0238
502510 0.00001 −0.00015 0.00005 0.4838 0.0008 1.9171

Based on the results and the computation, a network with the following
parameters was selected as the best-performing:

• Number of hidden layers: 1;
• Number of hidden neurons: 9;
• Hidden layer activation function: sigmoidal;
• Output layer activation function: linear;
• Number of epochs before reaching the minimum gradient value (stop

condition): 2716;
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• EMG horizon: 50 steps;
• Angle horizon: 10 steps;
• Mean squared error in the final epoch: 7.43 ∗ 10−10;
• Gradient value in the final epoch: 2.85 ∗ 10−6;

The network was designed to operate in two modes during modelling. Ini-
tially, the first 200 steps (corresponding to the first second of movement)
functioned in an open-loop form, utilizing actual output values. After this ini-
tial phase, the computation transitioned to a closed-loop form for prediction,
relying only on the input data (EMG) and former predictions. This simulated
predicting the further motion of the multibody system at every timestamp for
the second ahead.

The network’s performance was evaluated based on the differences
between the predicted and real-life angle values. Figure 4 illustrates a com-
parison of the predicted and real-life elbow flexion and extension angles,
along with the prediction errors, for the network trained and tested on the
same participant’s data. On the contrary, Figure 5 presents the results of the
network trained and tested on the different participants’ data. The former
has an accuracy not worse than 0.05◦, while the latter’s accuracy ranges even
up to 1◦. Moreover, these increase while testing on a dataset acquired for the
different loads. The errors with the largest amplitude occurred during rapid
accelerations in the joints.

Throughout the parameter changes, including variations in the number
of hidden neurons and horizons, the network consistently indicates the
following trends independent of these:

• The network achieves the largest errors on the learning set when predicting
elbow flexion and extension angle values;

• The smallest errors are achieved for the prediction of elbow rotation angle
values;

• The largest prediction inaccuracies rise with the increasing acceleration.

Figure 4: Comparison of the real-life and predicted elbow flexion and extension angles
of the network trained and tested on the same participant’s data during a series of five
simple exercises.
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Figure 5: Comparison of the real-life and predicted elbow flexion and extension angles
of the network trained and tested on the different participants’ data during a series of
five simple exercises.

Additionally, for a fixed number of hidden neurons (10), the impact of
decreasing and increasing the EMG horizon was examined. A slight decrease
resulted in worse results, while an increase improved the accuracy for the
same participant but worsened it for a different one. However, no significant
overall changes in the prediction outcomes were observed.

Furthermore, the effect of changing the length of the angle horizon was
analyzed. Increasing it led to a neglectable improvement in the network’s
performance but significantly increased the computation time. On the other
hand, reducing the horizon to 5 drastically affected the results, particularly
while testing and training the network on the different participants’ datasets.
In such a case, the maximum error exceeded 41◦.

To validate the methodology performance independently of the dataset,
the procedure was replicated on another research team’s similar measure-
ment dataset (Hubaut, 2022). The results from this replication confirmed the
universality of the approach, as the obtained results were on a similar level
of quality to the ones obtained in own research.

CONCLUSION

The conducted investigation proves that the proposed methodology is suit-
able for predicting the kinematics of a patient exercising at least one second
in advance. For this purpose, a series of trials involving networks of differ-
ent architectures were performed. These were based on the collected datasets
with positions of the upper limb and EMG signals of the corresponding mus-
cles. The achieved accuracy at the level of 0.01 degree is considered sufficient,
similar to the typical servodrives positioning accuracy. Regarding results, the
proposed approach can be applied to predictive control over any rehabilita-
tion exoskeleton. This can be realised by performing an individual calibra-
tion of the system and then training models, each dedicated to a different
user.

For practical reasons, the angle data can be recorded directly with the
exoskeleton’s encoders. Thanks to this, the motion capture and multibody
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model will be eliminated from the procedure. However, involving these
in the proof of concept eliminated potential inaccuracies of the designed
exoskeleton and risks of harm to the test objects. As the final outcome,
the methodology is planned to be incorporated into the predictive control
of ExoReha.
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