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ABSTRACT

Autonomy has found wide-ranging applications, yet its imperfect nature necessitates
human oversight and intervention. Investigating autonomy’s impact on the operator
is pivotal for enhancing human-machine system performance and safety. This study
analyzes the effects of autonomous system reliability on operator task performance
and mental workload in the context of vehicle type recognition. Experimental findings
reveal that autonomy with 90% reliability significantly reduces task completion time
and lessens subjective workload. Autonomy with 70% reliability supports the partic-
ipants, while 50% reliability hampers them, although insignificantly. The reliability
threshold for autonomy to have no effect on the participants is around 55%. Auton-
omy reliability’s influence on the operator lies in altering task completion strategies
— an all-or-none approach that accelerates task processing speed without improving
overall response accuracy. The experiment yielded insights applicable to the design
of assistive autonomous systems and the allocation of human-machine functions in
real-world tasks.
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INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are experiencing a surge in usage across
diverse fields, such as health, industry, agriculture, and the military
(Ayamga, Akaba, & Nyaaba, 2021). Image recognition and classification is a
mission-critical aspect of modern human-UAV system interaction. Integrating
autonomous systems, like computer vision technology, is pivotal in reducing
manpower and personnel costs, enhancing efficiency, and minimizing vari-
ability (Balfe, Sharples, & Wilson, 2015). Nevertheless, since autonomous
systems are not infallible, operator confirmation of the autonomous recog-
nition results remains imperative to ensure the system’s overall performance
and prevent potential safety and liability incidents (Parasuraman & Riley,
1997).

The relationship between autonomy and operator mental workload is
an essential consideration to efficiency and safety (Kantowitz & Campbell,
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1996). Mental workload refers to “the portion of operator information
processing capacity or resources that is required to meet system demands”
(Eggemeier, Wilson, Kramer, & Damos, 2020), which is commonly assessed
via subjective reports, the primary and/or the secondary task performance
and physiological metrics (Young, Brookhuis, Wickens, & Hancock, 2015).
The effects of the reliability of autonomy on operator mental workload
and performance during human-machine collaboration are not entirely clear.
Some studies have suggested that mental workload and performance improve
as the degree of autonomy reliability increases (Balfe et al., 2015; Chavail-
laz, Wastell, & Sauer, 2016). However, it has also been reported that more
reliable autonomous systems can lead to over-reliance and complacency
(Parasuraman,Mouloua,Molloy, &Hilburn, 1996), potentially reducing the
operator’s situation awareness and resulting in lower task performance and
increased mental workload (Oakley, Mouloua, & Hancock, 2003), which
is especially pronounced during sudden abnormal situations or phases when
the task complexity is already high (Frazier, McComb, Hass, & Pitts, 2022).

A study conducted by Wickens and Dixon (2007) presented a quasi-meta-
analysis that demonstrated when autonomous systems operate at reliability
levels below 70%, they result in poorer system performance compared to sit-
uations where no autonomy is present. Conversely, higher reliability yields
more favorable outcomes. However, the review did not accurately define the
concept of reliability, such as misses, false alarms, or mixed errors. Addition-
ally, it also failed to provide a comprehensive distinction between various task
domains and types, which encompasses multiple domains, including aviation,
driving, and the military, coupled with diverse task types such as moni-
toring, diagnosing, and controlling. Consequently, there exists a necessity
for further validation of the determined threshold’s applicability and univer-
sality. Furthermore, most pertinent literature focuses on concurrent tasks,
thus posing challenges when attempting to directly evaluate the influence of
autonomy reliability on a specific task. Since intricate decision processes can
be deconstructed into a sequence of atomic binary decisions, the conclusions
drawn from simple independent binary decision tasks can be more seamlessly
extrapolated to other decision-making contexts (Yu, Berkovsky, Taib, Zhou,
& Chen, 2019).

In summary, this study addressed two critical questions based on the
dichotomous task of vehicle type recognition: (1) How does the introduction
of autonomy affect the operator’s mental workload and performance? (2)
What is the relationship between the effects and the autonomy’s reliability
(specifically, false alarms)? Examining the effects of imperfect autonomous
systems on operator mental workload and performance carries significant
implications for vital aspects like the design of assistive autonomous systems
and the allocation of human-machine functions.

METHODOLOGY

Task and Materials

In this experiment, the participants were exclusively tasked with a singular
objective: discerning whether the vehicle depicted in the image is a passenger
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or non-passenger vehicle. They were then required to provide corresponding
keypress responses (“C” for passenger vehicles and “N” for non-passenger
vehicles) based on their identification decision. Passenger vehicles include
taxis, private cars, and buses, while non-passenger vehicles include engi-
neering and military vehicles. All experimental images were sourced from
pertinent YouTube videos, and the experimental platform (see Figure 1),
named ATLP, was developed using MATLAB 2022b.

Figure 1: Diagram of the experimental platform. On the left, a vehicle image awaits
participant identification. The image was converted to grayscale to simulate the UAV’s
perspective, with a red box highlighting the target vehicle for localization simulation.
The right side presents essential data: participant ID, experimental phase, current
autonomy reliability level, and elapsed round time. Below, conveniently accessible
response buttons, operable via the keyboard, offer participant interaction.

Design and Procedure

The experimental study focused on the independent variable of assisted
autonomous system reliability, with a total of four distinct levels: 0%, 50%,
70%, and 90%. 0% indicates that no autonomous system was involved,
and all judgments needed to be completed by the participants themselves.
In contrast, the three other reliability levels entailed the presentation of
images pre-filtered by the autonomous system, and each finally presented to
the participants was consistently labeled as the passenger vehicle. Nonethe-
less, owing to the autonomy’s reliability not reaching 100%, the prospect
remained that non-passenger vehicle images might be presented. In the exper-
imental conditions involving the autonomy, the participants could either
directly entrust the autonomy’s recognition outcome and press the key of
“C” upon image display or, alternatively, re-evaluate the image and respond
by pressing a key corresponding to their own recognition results.

The reliability of the autonomous system was attained and calibrated
through random number generation. For instance, in the case of the
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autonomous system operating at 70% reliability, the system first generated
a random number within the range of 0 to 1 before each presentation of
a vehicle image to the participants. A non-passenger vehicle was displayed
if this random number exceeded 0.7; otherwise, a passenger vehicle was
shown. Hence, the three levels mentioned above of autonomy reliability rep-
resent conceptual averages rather than static constants. The incorporation
of randomness serves to more faithfully replicate the utilization of image
recognition algorithms within real-world scenarios.

This study utilized a within-group design, requiring all participants to
complete the recognition and response task under the four experimental
conditions mentioned earlier. Each condition consisted of 30 rounds, with
independent content in every round and randomized image presentation
sequences. A Latin-square design was employed for the three autonomy-
assisted conditions to eliminate the impact of the condition order. However,
all participants must complete the experiment without autonomy assistance
first. Before each experimental phase, the participants were informed about
the autonomy reliability level. The entire experiment took approximately 30
minutes.

Dependent Measures

The experiment’s dependent variables comprised task performance and sub-
jective workload perception. Task performance was evaluated through task
completion time and image recognition accuracy, both of which were auto-
matically recorded by the ATLP system. Participants’ subjective workload
perception was assessed using the NASA-TLX (Hart, 2006), a widely uti-
lized scale that evaluates operator workload across six distinct dimensions.
This scale was filled out upon the completion of each experimental condition.

Participants

A total of 36 students from Tsinghua University participated in this experi-
ment (age: M = 24.4, SD = 2.8), including 15 male and 21 female students.
All participants had normal or corrected-to-normal vision. Before the exper-
iment, each participant received an initial introduction to the experiment’s
purpose and procedures. They were instructed to complete the experi-
ment with optimal speed and accuracy. Subsequently, informed consent was
obtained through signed consent forms. Following task completion, each
participant received a reward of U30 (approximately $5).

Data Processing

Due to the participation of over 30 individuals and the implementation
of a within-group design with an equal distribution of participants across
each experimental condition, the parametric tests exhibited robustness.
Consequently, repeated measures ANOVA and paired t-tests with Bonfer-
roni adjustments were combined to assess the distinctions among the four
experimental conditions. Furthermore, an initial examination of the relation-
ship between autonomy reliability and operator performance, and mental
workload was conducted through linear regression analysis.
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RESULTS

Figure 2 illustrates the findings regarding the participants’ task performance
and subjective workload perception across reliability conditions (R0, R50,
R70, and R90). Examination of recognition accuracy indicated no significant
differences among all groups (F (3, 105) = 0.82, p = .48, η2 = 0.01), and
all groups exhibited recognition accuracy exceeding 95% (Table 1). How-
ever, task completion time significantly differed across reliability conditions
(F (3, 105) = 22.83, p < .01, η2 = 0.10). Post hoc analyses showed
that those in the R90 condition achieved notably shorter task completion
time (Table 2), while differences among the other three conditions were not
statistically significant.

Figure 2: Performance and mental workload across experimental conditions: (a) Mean
task completion time; (b) Mean recognition accuracy; (c) Mean NASA-TLX score; (d)
Mean scores on the six dimensions of the NASA-TLX.

Subsequent analysis of subjective workload data revealed significant
differences among all groups concerning the overall NASA-TLX score
(F (3, 105) = 10.60, p < .01, η2 = 0.08) and its four subscales,
including mental demand (F (3, 105) = 11.58, p < .01, η2 = 0.08),
physical demand (F (3, 105) = 6.83, p < .01, η2 = 0.02), tempo-
ral demand (F (3, 105) = 3.61, p = .02, η2 = 0.03), and effort
(F (3, 105) = 15.52, p < .01, η2 = 0.14). Further post hoc assess-
ments indicated that the R90 group attained the lowest scores on all the
dimensions mentioned above. Remarkably, their scores were significantly
lower than the other three groups in mental demand and effort, signifi-
cantly lower than the R0 and R50 groups in the NASA-TLX, and only
significantly lower than the R50 group in physical demand. The R50 group
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obtained the highest scores on the NASA-TLX, mental and physical dimen-
sions, with significant difference observed solely in the NASA-TLX. More
details on post hoc analysis are shown in Table 2.

Table 1. Descriptive statistics for performance and mental workload: M(SD).

Reliability 0% (R0) 50% (R50) 70% (R70) 90% (R90)

Accuracy (%) 95.9 (3.7) 95.7 (4.3) 95.4 (4.5) 96.6 (3.2)
Time (s) 32.8 (6.3) 33.0 (7.0) 31.3 (8.6) 27.1 (6.8)
NASA-TLX 33.9 (12.7) 35.3 (12.9) 31.2 (15.5) 25.2 (14.0)
Mental Demand 41.8 (23.2) 46.4 (20.2) 40.3 (20.5) 29.6 (16.9)
Physical Demand 20.7 (17.2) 23.8 (18.1) 22.1 (17.0) 17.6 (16.3)
Temporal Demand 41.5 (20.1) 37.8 (19.0) 36.1 (21.1) 31.7 (21.0)
Performance 30.0 (19.8) 31.1 (15.5) 27.5 (19.8) 23.8 (18.4)
Effort 43.8 (19.9) 42.9 (20.3) 35.9 (19.4) 24.9 (15.1)
Frustration 25.6 (18.2) 30.0 (18.9) 25.3 (19.6) 23.6 (20.8)

Table 2. The significant part of post hoc test results.

Condition 1 Condition 2 t p.adj

Time R0 R90 5.95 <.01
R50 R90 7.72 <.01
R70 R90 5.12 <.01

NASA-TLX R0 R90 3.95 <.01
R50 R70 2.98 .03
R50 R90 4.61 <.01

Mental Demand R0 R90 4.40 <.01
R50 R90 5.36 <.01
R70 R90 3.35 .01

Effort R0 R90 6.06 <.01
R50 R90 5.28 <.01
R70 R90 3.79 <.01

Physical Demand R50 R90 4.47 <.01

Using R0 as the baseline condition, the differences between the experimen-
tal outcomes of the other three conditions and the baseline condition were
quantified. Assuming the simplest linear relationship between autonomy
reliability and operator performance and mental workload, the experimen-
tal results were linearly fitted, with task completion time and NASA-TLX
score differences serving as functions of autonomy reliability, respectively
(Figure 3). The regression equation for task completion time (Time) in
relation to autonomy reliability (Reliability) was Time = −14.88 ×
Reliability + 8.09 (F = 24.39, p < .01). Since neither variable followed
a normal distribution, Spearman’s correlation yielded r = −0.45 (p <. 01),
indicating an 18% variance attributable to reliability. The regression equa-
tion for NASA-TLX score (Score) in relation to autonomy reliability (Relia-
bility) was Score = −25.35× Reliability + 14.42 (F = 13.85, p < .01).
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Similarly, a correlation of r = −0.35 (p < .01) emerged, with reliability
accounting for 11% of the variance. Notably, the predicted crossover points
where Time = 0 lay at Reliability = 0.544, and Score = 0 lay at
Reliability = 0.569.

Figure 3: Regression analysis of (a) task completion time and (b) NASA-TLX score on
autonomy reliability.

DISCUSSION

The participants did not attain 100% accuracy across all experimental con-
ditions, indicating that the presence of autonomy and its reliability are not
the primary factors influencing the participants’ image recognition accuracy.
Some participants noted post-experiment that they struggled to discern the
vehicle type in certain images and had to make random selections. Addition-
ally, instances of continuous key presses and erroneous inputs were reported
during the experiment. Participant unfamiliarity with the experimental mate-
rials and misoperation under time constraints may underlie the fluctuations
in image recognition accuracy. Importantly, this factor remains constant and
unaffected by the experimental conditions.

Compared to the other experimental conditions, the R90 group exhibited
significantly shorter task completion time and significantly lower NASA-
TLX scores. This implies that autonomy with 90% reliability significantly
reduces the participants’ mental workload, predominantly in the dimensions
of mental demand and effort. The participants achieved the same near-perfect
recognition accuracy as the baseline condition (R0) with fewer attention
resources. Both objective performance and subjective scores for the R70 and
R50 groups did not significantly differ from those of the R0 group. How-
ever, examining the mean values, both task completion time and NASA-TLX
scores were comparatively higher for the R50 group in contrast to the base-
line condition and lower for the R70 group. This suggests that autonomy
with 50% reliability had a disruptive effect on the participants, while auton-
omy with 70% reliability had a slightly assistive impact, although neither
reached statistical significance.

The effects of autonomy on operator performance and mental workload
may stem from altering the operator’s task completion strategy. When pre-
sented with an image, the participants can opt to trust the system’s judgment
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and respond by pressing “C” (Path 1). Alternatively, the participants can dis-
regard the system’s results and respond based on their own judgment (Path
2). Another option is to combine the system’s judgment and their own before
responding (Path 3). Of course, there are additional paths that might not
be immediately recognizable. Under different paths, the extent to which the
operator completely disregards or attentively considers certain signals, as
well as the number of signals involved, varies. Various autonomy reliabili-
ties influence the proportion of the operator selecting these task-processing
paths. Higher autonomy reliability may lead the participants to rely more
on the machine, overlooking more image-related information, and reacting
solely to pivotal and uncomplicated machine-generated judgments, hence
favoring Path 1. Conversely, the participants might lean towards Paths 2
and 3 under lower autonomy reliability. Autonomy reliability impacts the
operator’s reliance and trust in the machine, consequently reshaping resource
allocation and task execution strategy. This all-or-none approach enables
quicker task completion at higher reliability levels by allowing the user to
address more rounds (Ferraro & Mouloua, 2021). However, it does not
enhance overall response accuracy.

Furthermore, the presence of autonomy might introduce additional, albeit
unnecessary, compelling information that the operator must attend to. Since
this experiment is dichotomous, the significance of autonomy’s presence
becomes negligible when autonomy’s reliability is at 50%—in other words,
experiments R0 and R50 are nearly indistinguishable. Despite this, the exper-
imental results reveal a negative impact of the autonomous system. This
implies that the operator cannot entirely disregard the low-reliability auton-
omy’s presence and act with complete independence in forming judgments.
This underscores the importance of prioritizing autonomy reliability when
integrating autonomy aids into real-world tasks.

The linear regression results exhibit a notable inverse correlation between
autonomy reliability and operator task completion time and NASA-TLX
scores. The thresholdmarking the boundary between the disruptive and assis-
tive impacts of autonomy is approximately 55%. Interestingly, this threshold
is significantly lower than what the previous review suggested (Wickens &
Dixon, 2007), which might relate to variations in task type, quantity, and the
specific definition of reliability.

There are two limitations to this experiment. Firstly, the task duration
may have been too brief, or the number of experimental rounds too lim-
ited. Establishing a stable perception of the machine requires a certain time
frame, allowing continuous adjustments to culminate in a more steadfast
task-processing strategy. The task strategy’s volatility could contribute to the
lack of significant differences between the R50, R70, and R0 groups. Existing
literature suggests that around 30 rounds are needed to solidify a stable task-
processing strategy (Yu et al., 2019), though this value may be specific to the
task. In future, preliminary experiments and pilot studies could be employed
to determine the required number of rounds or time duration for strategy
stabilization prior to conducting formal experiments.

Secondly, the experimental design encompassed a limited number of inde-
pendent variable levels. This hindered a direct comparison of operator task
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performance and subjective workload perception across various reliability
levels. Moreover, the data’s sparsity posed challenges for accurate linear fit-
ting to model the relationship between reliability and mental workload. This
complexity extended to exploring the reliability level of assisted autonomy
when achieving baseline performance equivalency. For future investigations,
increasing the number of reliability levels, incorporating physiological mea-
surements, and employing nonlinear models for fitting experimental results
could yield more precise relationship models and threshold delineations.
Moreover, endeavors could be made to identify the operator’s task comple-
tion strategies based on physiological metrics, verifying assumptions about
underlying influence mechanisms.

CONCLUSION

Given that human judgment and decision-making flexibility surpasses that
of computers, humans will continue to be an integral facet of unmanned
systems. Hence, studying human capabilities, constraints, and modes of
human-machine interaction within such systems is necessary. This inves-
tigation delves into the effects of autonomous systems on operator task
performance and mental workload during a vehicle type recognition task.
Results indicate no significant difference in operator recognition accuracy
across experimental conditions. However, a pronounced negative correla-
tion emerges between autonomy reliability and operator task completion
time and NASA-TLX scores. Autonomy with 90% reliability significantly
reduces task completion time and subjective workload; autonomy with 70%
reliability partially assists the participants, and autonomy with 50% relia-
bility disrupts the participants’ performance and mental workload, although
insignificantly. The autonomy reliability threshold without any effect on the
participants is approximately 55%. Autonomy reliability’s influence on the
operator hinges on modifying their task completion strategies, encompass-
ing attention allocation and path selection ratios. This all-or-none approach
enhances task processing speed but fails to improve response accuracy. This
research highlights the significance of emphasizing autonomy assistance reli-
ability during its integration into real-world tasks. Future considerations
encompass increasing task round numbers and independent variable levels
for more direct autonomy reliability effect comparisons. Moreover, exploit-
ing physiological metrics to discern diverse operator task processing strategies
could validate effect mechanism assumptions. A more precise functional rela-
tionship model concerning autonomy’s impact on the operator could emerge
by combining assorted data types. This study informs assistive autonomy sys-
tem design and human-machine function allocation in real-world tasks, while
paving the way for exploratory adaptive autonomy research.
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