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ABSTRACT

As an effort to support data collection for dynamic human reliability analysis (HRA),
this study investigates time distributions for task primitives defined in the Goals,
Operators, Methods, and Selection rules (GOMS)–Human Reliability Analysis (HRA)
method. GOMS-HRA was developed to provide cognition-based time and human
error probability information for dynamic HRA calculation in the Human Unimodel for
Nuclear Technology to Enhance Reliability (HUNTER) framework. HUNTER is a frame-
work to support the dynamic modelling of human error in conjunction with other
modelling tools. In this paper, we investigate time distributions using experimental
data collected from the Simplified Human Error Experimental Program (SHEEP) study,
which suggests an HRA data collection framework to complement full-scope simula-
tor research as well as collect input data for dynamic HRA using simplified simulators
such as the Rancor Microworld Simulator. In this study, time required for GOMS-
HRA task primitives to satisfy thirteen statistical distributions is investigated. Then,
the time distributions from student operators and professional operators are com-
pared and discussed. As a result, this study identified several time distributions on
five GOMS-HRA task primitives at a statistically significant level. According to analy-
ses to date, a greater number of significant time distributions was found in abnormal
or emergency operating procedures rather than standard operating procedures. In the
future, it is expected that the result of this study can provide objective reference on
elapsed time data for task primitives as well as help to realistically simulate scenarios
within dynamic HRA.
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INTRODUCTION

Human reliability analysis (HRA) is an approach to evaluate human errors
and quantify human error probabilities (HEPs) for application in probabilis-
tic risk assessment (PRA) (Swain & Guttmann, 1983). The Risk-Informed
System Analysis (RISA) pathway under the U.S. Department of Energy’s
Light Water Reactor Sustainability (LWRS) Program sponsors a number of
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HRA-related projects that aim to create better tools to support industry
risk assessment needs. One such tool is the Human Unimodel for Nuclear
Technology to Enhance Reliability (HUNTER) project (Boring, et al., 2022).
HUNTER is a framework to support the dynamic modeling of human error
in conjunction with other modeling tools. HUNTER creates a virtual opera-
tor or, potentially, a human digital twin as a human operations counterpart
to plant hardware modeling and simulation. The name HUNTER is meant
as a counterpart to the various animal-named modeling tools developed
at Idaho National Laboratory (INL), such as Risk Analysis Virtual Code
ENvironment (RAVEN) and Multiphysics Object-Oriented Simulation Envi-
ronment (MOOSE). These tool names playfully combine to become tools like
RAVEN-HUNTER or MOOSE-HUNTER.

Our research team has developed an HRA data collection framework
called the Simplified Human Error Experimental Program (SHEEP) to com-
plement full-scope simulator studies as well as collect input data for dynamic
HRA like HUNTER (Park, et al., 2022). The SHEEP framework aims to
infer full-scope data based on experimental data collected from simplified
simulators, specifically the Rancor Microworld Simulator (Rancor) and the
Compact Nuclear Simulator (CNS). Within the SHEEP framework, our
research team has experimentally collected the human reliability data from
forty student operators and forty professional operators when they used CNS
and Rancor. To date, human errors and performance measurements collected
from experiments have been analyzed and discussed in the previous research
(Park, et al., 2022; Park, et al., 2023).

From within the umbrella of the SHEEP framework, this study aims
to investigate time distributions for task primitives defined in the Goals,
Operators, Methods, and Selection rules (GOMS)-HRA method (Boring &
Rasmussen, 2016). GOMS-HRA was developed to provide cognition-based
time and HEP information for dynamic HRA calculation in the HUNTER
framework. In this study, we investigated time distributions for GOMS-
HRA task primitives using the SHEEP database, which includes experimental
data when twenty student operators and twenty professional operators using
Rancor. From the experimental data, time required for GOMS-HRA task
primitives to satisfy thirteen statistical distributions was investigated. Then,
the time distributions from student operators and professional operators are
compared and discussed.

GOMS-HRA TASK PRIMITIVES

GOMS-HRA was developed to provide cognition-based time and HEP infor-
mation for dynamic HRA calculation in the HUNTER framework. GOMS-
HRA has been used to model proceduralized activities and evaluate user
interactions with human-computer interfaces in human factors research. As a
predictive method, GOMS-HRA is well-equipped to simulate human actions
under specific circumstances in a scenario. The basic approach of GOMS-
HRA consists of three steps: (1) breaking human actions into a series of
task-level primitives, (2) allocating time and error values to each task-level
primitive, then (3) predicting human actions or task durations.
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Table 1 shows the GOMS-HRA task primitives. GOMS-HRA originally
suggested twelve task primitives performed in control rooms and in the field.
However, in this study, we only concentrate on the five task primitives (i.e.,
AC, CC, RC, SC, and DP) highlighted as grey color in the table. Actually, the
SHEEP expertiment has focused on control room data when a single operator
runs a simulator using procedures. Accordingly, task primitives regarding
field operations (i.e., AF, CF, RF, and SF), actions regarding decision-making
without procedures (i.e., DW), and communication between operators (i.e.,
IP, and IR) were excluded in this study.

Table 1. GOMS-HRA task primitives.

Task Primitives Description

AC Performing required physical actions on the control boards
AF Performing required physical actions in the field
CC Looking for required information on the control boards
CF Looking for required information in the field
RC Obtaining required information on the control boards
RF Obtaining required information in the field
IP Producing verbal or written instructions
IR Receiving verbal or written instructions
SC Selecting or setting a value on the control boards
SF Selecting or setting a value in the field
DP Making a decision based on procedures
DW Making a decision without available procedures

THE SHEEP EXPERIMENT DATA

The SHEEP data have been collected from twenty student operators and
twenty professional operators when they used Rancor. Most of the pro-
fessional operators were licensed reactor operators currently employed at
nuclear power plants (NPPs). They were all operators on shift (i.e., a shift
supervisor, shift technical advisor, reactor operator, or turbine operator)
or instructors at the training center. As for the student operators, they
were all undergraduate seniors or graduate students from the Department
of Nuclear Engineering at Chosun University. They were knowledgeable
about NPP systems and operations, having completed a significant por-
tion of their coursework, which included courses such as “Introduction to
Nuclear Engineering,”“Reactor Theory,”“Reactor Control,” and “Simulator
Operation.”

This study investigated time distributions of the GOMS-HRA task prim-
itives depending on procedures. Basically, procedures used in NPPs have
different goals. For example, operating procedures (OP) aim to stably reach
different operating modes such as startup or hot standby, while emer-
gency operating procedures (EOPs) are mainly composed of instructions
for rapidly cooling down reactors. Accordingly, this study distinguished
seven different procedure sets as shown in Table 2. For OP-03 and OP-04,
and OP-05 and OP-06, these are combined as a procedure set respec-
tively because these are used in a scenario for achieving a goal. Specifically,
OP-04 and OP-06 are parts of OP-03 and OP-05. In this paper, the result
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of time distribution analysis on EOP-01 is mainly introduced in the next
session.

Table 2. Procedure information used in the SHEEP experiment.

Procedure
Set No.

Procedures
Included

Description Related Scenario

1 OP-01 This procedure describes how to start
up and operate Rancor in auto mode.

Scenario #1 (fully auto start-up)

2 OP-02 This procedure describes the process to
shut-down Rancor.

Scenario #2 (shutdown)

3 OP-03 &
OP-04

This procedure describes how to start
up and operate Rancor in control rod
manual operation mode.

Scenario #3 (manual rod control
during start-up)

4 OP-05 &
OP-06

This procedure describes how to start
up and operate Rancor in feedwater
manual operation mode.

Scenario #4 (manual feedwater
flow control during start-up)

5 AOP-01 This procedure shuts down the plant
in an expedient manner.

Scenario #5∼#10 (failure of a
reactor coolant pump, failure of a
control rod, failure of a feedwater
pump, turbine failure, steam
generator tube rupture, and loss of
feedwater)

6 EOP-01 This procedure provides actions to
minimize leakage of reactor coolant
into the secondary system following a
steam generator tube rupture.

Scenario #9 (steam generator tube
rupture)

7 EOP-02 This procedure provides actions to
diagnose and mitigate a loss of
feedwater.

Scenario #10 (loss of feedwater)

TIME DISTRIBUTION ANALYSIS RESULT: EOP-01

Tables 3 and 4 show the number of tasks used for time distribution analysis
and the result of goodness-of-fit test for thirteen statistical distributions on
elapsed time of the five GOMS-HRA task primitives in the EOP-01 proce-
dure depending on participant type, i.e., student operators, and professional
operators. There were 490 total tasks counted when twenty student operators
and twenty professional operators manipulate Rancor using the EOP-01 pro-
cedure. The number of tasks for student operators (248) was slightly higher
than for professional operators (242). The differences on the number of tasks
per participant type rely on cases that a participant additionally performs
instructions that can be omitted within a procedure context, or a participant
cannot continue a scenario because the reactor has abnormally tripped during
the scenario.

Table 3. The number of tasks used for time distribution analysis (EOP-01).

Participant Type GOMS-HRA Task Primitive The Number of
Tasks per
Participant Type

The Total
Number of
TasksAC CC RC SC DP

Student operators 59 80 49 10 50 248 490
Professional operators 57 78 49 10 48 242
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Table 4. Time distribution analysis on the five GOMS-HRA task primitives in the EOP-01
procedure depending on participant type (student vs. operator).

Distribution P-value of Goodness of Fit Test

Student Operator

AC CC RC SC DP AC CC RC SC DP

Normal <0.005 <0.005 <0.005 0.014 <0.005 <0.005 <0.005 <0.005 0.237 <0.005
Normal (after
Box-Cox
transformation)

0.374 <0.005 0.010 0.653 0.070 0.340 <0.005 <0.005 0.237 0.041

Lognormal 0.374 <0.005 0.010 0.404 0.070 0.340 <0.005 <0.005 0.031 0.041
Exponential 0.023 <0.003 0.018 0.486 0.051 <0.003 <0.003 <0.003 0.021 <0.003
2-parameter
exponential

0.083 <0.010 <0.010 >0.250 0.011 <0.010 <0.010 <0.010 0.012 0.034

Weibull <0.010 <0.010 <0.010 0.189 <0.010 0.015 <0.010 <0.010 0.236 0.022
3-parameter Weibull 0.013 <0.005 <0.005 0.404 <0.005 0.084 <0.005 <0.005 0.254 0.006
Smallest extreme value <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 0.092 <0.010
Largest extreme value <0.010 <0.010 <0.010 0.037 <0.010 0.088 <0.010 <0.010 0.227 0.016
Gamma <0.005 <0.005 0.007 0.208 0.006 0.167 <0.005 <0.005 0.182 0.047
Logistic <0.005 <0.005 <0.005 0.016 <0.005 <0.005 <0.005 <0.005 0.235 <0.005
Loglogistic >0.250 <0.005 <0.005 >0.250 0.032 0.233 <0.005 <0.005 0.104 0.017
Normal (after Johnson
transformation)

0.563 N/A N/A 0.763 N/A 0.364 N/A N/A N/A N/A

Among student operators’ task primitives, elapsed time for AC was sta-
tistically significant on normal distribution after Box-Cox transformation,
lognormal distribution, 2-parameter exponential distribution, loglogistic dis-
tribution, and normal distribution after Johnson transformation. The statisti-
cal significance for elapsed time means that the data set are distributed within
confidence intervals in each statistical distribution. For elapsed time for SC,
the task primitive satisfied statistical significance level on normal distribution
after Box-Cox transformation, lognormal distribution, exponential distribu-
tion, 2-parameter exponential distribution,Weibull distribution, 3-parameter
Weibull distribution, gamma distribution, loglogistic distribution, and nor-
mal distribution after Johnson transformation. In addition, elapsed time
for DP was statistically significant on normal distribution after Box-Cox
transformation, lognormal distribution, and exponential distribution. On the
other hand, elapsed time for AC from professional operators’ data showed
statistically significant result on normal distribution after Box-Cox trans-
formation, lognormal distribution, 3-parameter Weibull distribution, largest
extreme value distribution, loglogistic distribution, and normal distribution
after Johnson transformation. For elapsed time for SC, the task primitive
satisfied statistical significance level on normal distribution, normal dis-
tribution after Box-Cox transformation, Weibull distribution, 3-parameter
Weibull distribution, smallest extreme value distribution, largest extreme
value distribution, gamma distribution, logistic distribution, and loglogistic
distribution.

Figures 1–5 summarize the most optimal time distributions represent-
ing the highest p-value among time distributions per each task primitive.
Figure 1, Figure 2, and Figure 3 include normal distributions (after Johnson
transformation) of AC and SC, and lognormal distribution of DP for student
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operators’ tasks in the EOP-01 procedure. The average elapsed time from
the time distributions are 11.92 seconds for AC, 9.80 seconds for SC, and
6.14 seconds for DP. Figure 4 and Figure 5 show normal distributions (after
Johnson transformation) of AC and 3-parameter Weibull distribution of SC
for professional operators’ tasks in the EOP procedure, respectively. The aver-
age elapsed time from these time distributions are 7.21 seconds for AC and
5.30 seconds for SC.

Figure 1: Normal distribution (after Johnson transformation) of AC for student opera-
tors’ tasks in the EOP-01 procedure.

Figure 2: Normal distribution (after Johnson transformation) of SC for student opera-
tors’ tasks in the EOP-01 procedure.

Figure 3: Lognormal distribution of dp for student operators’ tasks in the EOP-01
procedure.
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Figure 4: Normal distribution (after Johnson transformation) of AC for professional
operators’ tasks in the EOP-01 procedure.

Figure 5: 3-parameter weibull distribution of SC for professional operators’ tasks in
the EOP-01 procedure.

CONCLUSION

This study investigated time distributions for five GOMS-HRA task primi-
tives from the seven different sets of procedures having different goals and
comparing the time distributions depending on participant type. In this paper,
time distributions for the five GOMS-HRA task primitives in the EOP-01
procedure are introduced. As a result, several time distributions on the
five GOMS-HRA task primitives were found at statistically significant level.
Specifically, the greater number of time distributions were found in abnormal
operating procedure (AOP)-01, EOP-01 and EOP-02 when compared to the
OP procedures. Manipulation-related task primitives, i.e., AC (Performing
required physical actions on the control boards) and SC (Selecting or setting a
value on the control boards), satisfied relatively many statistical distributions
with high confidence levels in comparison with other task primitives.

A relatively smaller number of time distributions satisfied statistically
significant levels in the OP procedures. Actually, some tasks in the OP pro-
cedures include elapsed time for plant parameters to reach certain values.
These may make it difficult to get time distributions with statistical signifi-
cance level. Also, no time distributions have been found on RC (Obtaining
required information on the control boards) regardless of participant type.
In the SHEEP experiment, each participant carried out six scenarios at one
setting. Accordingly, there may be learning effects for participants to obtain
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any information from the Rancor interface. The learning effect may interfere
with satisfying time distributions.

Our research team continues analyzing the experimental data. Further
analyses will be performed to clarify these issues and arrive at better time
distributions applicable to dynamic HRA in the future. Already, these data
show the possibility of using GOMS-HRA task level primitives to arrive at
time distributions. Such time distributions may eventually prove as useful as
outright HEP estimations in future HRA applications.
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