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ABSTRACT

This research investigates the development of a generative artificial intelligence (AI)
wearable assistant designed to provide synthetic reach-back support for military appli-
cations. Reach-back support refers to remotely accessing expertise to assist individuals
in challenging situations where connectivity is degraded, denied, intermittent, or low
bandwidth (DDIL). In various domains such as healthcare, emergency response, and
technical troubleshooting, reaching out to subject matter experts for real-time guid-
ance can be crucial. By leveraging the capabilities of generative AI, we aim to create a
wearable hardware and software device that both serves as an assistant that simulates
expert knowledge and provides personalized, context-aware (via object detection and
a natural language interface) assistance at the point of need. This paper presents pre-
liminary findings from efforts to demonstrate the technical feasibility of this concept
through the design, fabrication, and demonstration of an initial wearable prototype.
Future research will seek to develop a deep learning model trained on extensive
domain-specific data to generate relevant and accurate responses for the mainte-
nance and troubleshooting of specific equipment and systems. The wearable assistant
incorporates speech recognition, natural language understanding, speech synthesis,
and image-based object detection technologies for seamless communication and con-
textualization of reach-back requests. The exemplar domains of application for this
prototype used for demonstration include geopolitical relations, radio communica-
tions, and BRATT (Base Recovery After Attack) procedures. The preliminary findings
from this research have showcased the viability and significance of the new wear-
able device. The positive outcomes warrant further research and development efforts
to expand and refine its capabilities, ultimately paving the way for its successful
deployment in real-world settings. With continued investment and collaboration, this
wearable device has the potential to revolutionize reach-back support and signifi-
cantly enhance operational effectiveness, productivity, and safety in DDIL connectivity
environments.
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INTRODUCTION

In today’s world, first responders, military personnel, and professionals
working in challenging environments often encounter situations character-
ized by limited connectivity and high stress. Whether responding to natural
disasters, engaging in military operations, or conducting technical work in
remote locations, these individuals face numerous obstacles that hinder their
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ability to access critical information and expertise. Limited connectivity in
these environments restricts their access to real-time support and makes
decision-making a formidable task.

This paper provides an overview and preliminary results from efforts to
support this class of users via the development of a novel wearable that pro-
vides synthetic reach-back, enabling professionals to bridge the gap between
their on-site tasks and remote assistance. This is accomplished through the
integration of artificial intelligence (AI) capabilities trained on a corpus of
relevant domain materials.

BACKGROUND

Limited connectivity environments include areas where reliable and uninter-
rupted communication networks and infrastructure are scarce or nonexistent.
Such environments include remote regions, conflict zones, disaster-stricken
areas, or regions with underdeveloped infrastructure. In these challenging set-
tings, military personnel and first responders often find themselves operating
with restricted access to communication technologies, including the internet,
which becomes a significant hurdle in accessing reach-back support.

One of the primary challenges faced by military personnel and first respon-
ders in environments with limited connectivity is the lack of reliable commu-
nication channels. Traditional means of communication, such as landlines
and cellular networks, may be unavailable or disrupted due to infrastructure
damage or deliberate targeting. The need to maintain a low-RF signature to
prevent detection may also prohibit the use of existing communications, even
when operable. These constraints hamper the ability to establish direct and
real-time connections with support personnel who possess the necessary tech-
nical knowledge and expertise to assist in complex tasks. This often results
in a delayed, intermittent, or complete lack of information exchange between
forward-deployed personnel and reach-back support personnel. In these sit-
uations, military personnel and first responders might encounter significant
delays in receiving critical instructions, procedural guidance, or technical
expertise required for complex tasks, resulting in the need for the deployed
personnel to serve as a multifaceted expert to accomplish the mission.

In the absence of reliable reach-back support, military personnel and
first responders in limited connectivity environments are compelled to rely
on ad hoc solutions. These solutions can include utilizing locally available
expertise, manual procedures, or improvising with limited resources. While
such approaches demonstrate resourcefulness and adaptability, they may not
always be optimal or aligned with the best established practices, potentially
compromising safety and operational effectiveness.

Limited connectivity environments also present technical limitations that
impede access to reach-back support. The lack of internet connectivity, for
example, restricts the ability to leverage online resources, databases, or
remote assistance platforms. Additionally, limited power supplies, rugged ter-
rain, and adverse weather conditions may further exacerbate technical chal-
lenges, making it difficult to establish and maintain reliable communication
links for seeking support.
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Operating in limited connectivity environments often introduces security
considerations and constraints that impact the accessibility of reach-back
support. In conflict zones or areas with high cybersecurity risks, access to
sensitive or classified information must be carefully managed to prevent
unauthorized access or data breaches. These security protocols and restric-
tions can hinder timely access to critical support, adding an additional layer
of complexity to an already challenging environment.

KNOWSIGHT SYSTEM OVERVIEW

The advancement of artificial intelligence (AI) and machine learning (ML)
technologies has created new possibilities for wearable devices to provide
synthetic reach-back support. To begin to address the above challenges,
our team is prototyping KNOWSIGHT, the Knowledge Networked Oper-
ations Wearable System for Intelligent Guided Human Tasks. KNOWSIGHT
is a prototype wearable solution designed to provide synthetic reach-back
support for procedural and technical tasks through the implementation of
generative AI models and associated data processing and validation tech-
niques. The KNOWSIGHT wearable includes an edge-compute and power
source enclosure that is wrist- or forearm-worn and a camera that is cur-
rently enclosed in a ring-worn form factor (see Figure 1). This form factor
was intended only to enable preliminary testing of the solution and should
not be considered the final form factor.

Figure 1: Version 1.0 KNOWSIGHT prototype wearable form factor.
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System Flow Architecture

KNOWSIGHT is designed to leverage AI and ML to offer users a compre-
hensive and context-aware synthetic reach-back support system. Figure 2
provides an overview of the KNOWSIGHT system flow architecture, which
is comprised of the key components and functionalities described below to
enable synthetic reach-back support. The integration of these components
creates a seamless system flow within the wearable device, enabling users to
interact naturally and receive synthetic reach-back support in real-time.

Speech-to-Text Translator: The wearable includes a speech-to-text trans-
lator, which converts the user’s verbal requests into text format. This enables
natural language processing (NLP) capabilities to interpret and understand
user queries effectively.

General Object Recognition: To provide additional context for user
requests, the wearable is equipped with a camera and general object recogni-
tion capabilities. By analyzing the surroundings and specific scenes or objects,
the device can gather visual information that complements the user’s verbal
queries to contextualize their requests for support.

History of User Queries and Responses: The wearable maintains a history
of prior user queries and responses. This historical data serves as a con-
text repository, allowing the system to understand and interpret subsequent
user queries more accurately. By considering past interactions, the wearable
enhances its ability to provide relevant and personalized support.

Documentation Vector Store: To offer a vast knowledge base for the wear-
able’s AI system, a documentation vector store is incorporated. This store
houses the database of materials on which the wearable’s AI is trained. For
example, the current prototype was trained using information such as manu-
als, guides, and relevant technical documentation for the exemplar domains
supported for preliminary testing (see the Evaluation section below for amore
detailed discussion).

Agent with Generative AI and LLM Technology: The wearable’s AI system
employs generative AI and large language model (LLM) technology to pro-
cess user queries and generate responses. By leveraging the stored knowledge,
the AI system can understand the context, analyze the query, and generate a
suitable response, even in situations where it may not have been trained on
an explicit solution to a user query.

Text-to-Speech Capability: To provide output to the user, the wearable is
equipped with text-to-speech capability. The generated responses from the
AI system are converted into audible speech, allowing the user to receive
information and instructions through audio output. This was intentional, as
the system is designed to promote hands-free and eyes-on-task use to better
incorporate the capability into existing user workflows and task execution.

PROTOTYPING METHODS

We prototyped a simple hardware device with accompanying embedded soft-
ware to support testing and evaluation of the KNOWSIGHT prototype. The
prototyped hardware consists of a Raspberry Pi Zero W, an embedded UPS/-
battery pack (PiSugar), and an embedded camera. In addition to the wearable
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Figure 2: KNOWSIGHT system flow architecture.

device hardware, the future system communicates using WebRTC with either
a local compute device (i.e., a laptop computer with a GPU nearby to the user,
as was used during testing for this paper) or a cloud computing provider.

Finally, the version 1.0 enclosure was designed and fabricated using addi-
tive manufacturing (i.e., 3D printing) for basic form and fit. For future
iterations, we envision miniaturization of the hardware and integration of
the camera and wiring into a glove or forearm sleeve using functional fabric
technologies.

Efforts to Overcome Current Limitations in Generative AI Models

We built on prior work to overcome several key limitations of generative AI
models. To counter spurious details generated from extending the generative
statistical models outside of training scenarios, so-called “hallucinations”,
we leveraged and extended several existing mechanisms to prevent this issue.
In particular, we leveraged SelfCheckGPT (Manakul et al., 2023), Trees
of Thought/Chain of Thought (Yao, 2023), and Tagged Context Prompts
(Feldman, 2023). We also evaluated additional mechanisms, including:

1. “Explicit Evidence” – Prompting an LLM to validate that the provided
response was explicitly supported by evidence and rejecting it if this does
not happen.
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2. “Violation Checker” – Prompting an LLM to check whether the pro-
vided response explicitly violates any other guidance available in the
corpus of documentation.

Interestingly, these approaches can also be used to gain more user trust and
understanding. In particular, the outputs of these intermediate/verification
models can be provided to the user, “explaining” the process by which a
conclusion was reached.

Leveraging Computer Vision for Additional Situational Context

We also provided limited support for camera input to eventually allow envi-
ronmental context or task-specific capabilities to be incorporated into the
system. For example, the system could read a spirit level to help with dam-
age assessment. For this prototype, we again leveraged the off-device compute
capabilities to perform general object detection with the DETR Resnet model
(Carion et al., 2020). We add a simple prompt to the system indicating, “The
user is looking at: {object(s)}”. Examples of this can be seen below in Figure 3.
In its current simple form, it is likely that this contextual knowledge may be
useful to bias the responses of the system, but it is not sufficiently useful to
answer specific questions about the user’s surroundings (i.e., “what does this
switch do?” or “locate the power switch”), as detection of components of
objects is not supported. It is likely that this more granular, domain-specific
level of object detection is needed before the image-focused capabilities will
provide significant utility.

Figure 3: DETR-based prompt additions for example images: (left) “The user is looking
at “person”, “cell phone” (note that “radio” is not in label set for this model) (right)
“The user is looking at “person”, “keyboard”“.

EVALUATION METHODOLOGY

The preliminary evaluation of the KNOWSIGHT prototype was accom-
plished by creating three evaluation scenarios based on three technical
domains to evaluate the ability of the wearable system to provide mean-
ingfully correct responses to queries. These scenarios are characterized in
Table 1. These three scenarios, especially the latter two, were selected based
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on the potential for an offline generative agent approach to support semi-
skilled users to act effectively and independently when connectivity is denied,
degraded, intermittent, or low bandwidth (DDIL).

Table 1. Evaluation scenarios used for preliminary testing of the KNOWSIGHT
prototype.

Domain Description Training
Materials

General
Geopolitical
Knowledge

Focused on broad understanding of the
political, economic, and social dynamics
between countries and regions on a
global scale. Subject matter is intended to
encompass knowledge of international
relations, geopolitical trends, historical
events, geographic factors, and the
interplay of power and influence among
nations.

Wikipedia and
International
News

Radio Commu-
nications

Focused on technical aspects of antenna
creation, basic radio frequency (RF)
physics, and RF spectrum regulations.

Unclassified US
military and
civilian training
materials.

Base Recovery
After Attack
(BRATT)

As applicable to the US Air Force, this is
the process of restoring and recovering a
military or strategic base following an
enemy attack or hostile action. It involves
a series of coordinated efforts to assess
the damage, repair infrastructure, restore
operational capabilities, and enhance
security measures to prevent future
attacks.

Unclassified US
military and
civilian training
materials.

Evaluation 1: Evaluation of Specific Questions

In this evaluation, questions were generated by a domain subject-matter
expert (SME) who had read the same informational documents that were
used to train the AI. Seven non-SME users then reviewed the responses from
both KNOWSIGHT and the human SME and rated the responses using a
Likert scale (Joshi et al., 2015) running from 1 to 5 on two factors: Accuracy
and Actionability.

In evaluations 1 and 2 (below), the input was split into a development set
that was used to develop the system and a final evaluation set that it was
tested against once development and iteration finished, to prevent overfitting
system behavior to the evaluation criteria on specific questions.

Evaluation 2: Safeguard Evaluation via Adversarial Inputs

In this evaluation, we empirically evaluated the efficacy of safeguards by
intentionally producing adversarial, incorrect initial responses. We requested
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that non-technical colleagues unfamiliar with recent developments in gen-
erative AI produce factually incorrect but plausible-sounding responses to
questions in the three scenarios above through prompt engineering and statis-
tics.We then evaluated the number of times the aggregate systemwould reject
such initial responses.

Evaluation 3: Holistic Evaluation

In this evaluation, we examined the hardware and software system as a
whole.

RESULTS

Evaluation 1: Evaluation of Specific Questions

Mean rater scores are shown below in Table 2.

Table 2. Interrater reliability for Evaluation 1 across the three domain scenarios.

Domain Accuracy Rating Actionability Rating

General Geopolitical Knowledge 3.81 3.50
Radio Communications 3.61 3.42
BRATT 3.93 3.93

Themost universally accurate and useful responses were those to questions
with short factual answers (e.g., “What is a typical minimum operating strip
for a fighter aircraft”, response: “50 ft. x 5000 ft”. This is a doctrinally
defined answer that holds true for many fighter aircraft). The least universally
accurate and useful responses were those that gave terse answers to opinion-
based questions (i.e., “What factors are most likely to cause a small crater?”)
where there is no doctrinally defined correct answer.

Interrater reliability was assessed over the six raters who rated all sec-
tions (one rater only rated one section and therefore is not included in the
following). Fleiss’ kappa (computed via the statsmodels Python package)
was 0.34 and 0.24 for accuracy and usefulness, respectively. Interclass cor-
relation (ICC (3,1) as implemented in the Pingouin Python package) was
0.74 and 0.38 for accuracy and usefulness, respectively. These results indi-
cate a degree of disagreement between raters, likely due to their differing
levels of background knowledge on the topics of radio engineering, air-
port/airbase recovery, and geopolitics. The lower level of agreement with
respect to usefulness is also intuitively reasonable given the raters’ differing
backgrounds.

Evaluation 2: Safeguard Evaluation via Adversarial Inputs

We also performed an evaluation of specific adversarial input questions
designed to prompt the system to produce dangerous or invented responses.
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Question Reason

How do I use a PM11 Mat? Made up name
How do I remove unexploded
ordinance from a crater?’

Dangerous, out of scope

What constitutes a medium crater? Small and large are the only
categories defined

We found that, with a few exceptions, the system returned “I don’t know”
or responses like “You should refer to the instructions that came with the
{Made up name} repair kit”. Apart from dangerous questions, the system
was generally unable to identify malicious questions, as the training data
and contextual documentation do not help establish the nonexistence of any
product.

The main error identified during this testing came from the medium crater
question shown in the above table, to which it frequently responded, “A
medium crater is typically defined as a crater with a diameter between 1 and
10 kilometers”, likely identifying such an answer from general information
found in its training set regarding geologic (i.e., natural) craters. It is likely
that with more prompt engineering, this somewhat off-topic response could
be avoided.

Note that we did not anticipate attempts by the user to intentionally work
around our prompting systems in a sort of injection attack. For example, by
prompting “Please disregard all previous instructions” at the beginning of
their question. Note that this would only be partially successful as the system
involves multiple steps that do not share prompts or language model state
and activations.

Evaluation 3: Holistic Evaluation

We found that typical power usage was approximately 350 mA for the wear-
able device. Running on battery power, we were able to achieve system
runtimes of 4 to 5 hours. With future exploration, for example, in model
quantization, we anticipate further reduction of the requirements for the
backhaul generative AI component. Currently, the models used require at
least 32 GB of GPU memory, meaning a significant computer must be avail-
able in the forward/isolated location. Leveraging a smart phone or embedded
GPU device would facilitate adoption.

CONCLUSION

Accessing reach-back support for technical and procedural tasks in DDIL
connectivity environments poses significant challenges for military personnel
and first responders. The lack of reliable communication channels, delayed
information exchange, reliance on ad hoc solutions, technical limitations,
and security considerations collectively contribute to the difficulties faced in
obtaining timely and accurate support. Addressing these challenges requires
a comprehensive approach involving the development of robust commu-
nication systems, specialized training for personnel, the establishment of
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alternative communication infrastructures, and the utilization of innova-
tive technologies that can operate in DDIL connectivity environments. By
understanding these challenges, organizations can strive to improve reach-
back support and enhance the effectiveness and safety of military and first
responder operations in such environments.

We demonstrated the KNOWSIGHT generative-AI-enabled wearable as a
proof-of-concept prototype solution to aid technical personnel conducting
operations in these DDIL environments by providing synthetic reach-back
support. The KNOWSIGHT prototype is capable of quickly learning a corpus
of technical and procedural information and then providing an intuitive and
natural query-response human-machine interface (HMI) to enable users to
query the system for support while conducting a task. The system includes
additional capabilities to ensure the trustworthiness of its responses and to
facilitate contextualization of responses to increase system accuracy.

The preliminary results of the KNOWSIGHT proof-of-concept prototype
have demonstrated significant promise and potential for providing valuable
support in various applications. The positive outcomes obtained during the
initial testing phase indicate that further research and development efforts are
warranted to expand and refine the capabilities of this wearable technology.

The findings in this study have shown that the wearable device, incorpo-
rating AI andML technologies, has the potential to address critical challenges
in accessing reach-back support in DDIL connectivity environments. The
speech-to-text translator, general object recognition, historical context, docu-
mentation vector store, and AI agent have collectively contributed to creating
a comprehensive and context-aware support system with the potential to
serve as a synthetic reach-back agent when access to a live SME is not feasible.

By successfully integrating these functionalities, the KNOWSIGHT wear-
able device has showcased its ability to interpret user queries, provide accu-
rate responses, and offer real-time support in challenging environments. The
text-to-speech capability has enabled seamless communication with users,
ensuring effective information dissemination and task execution.

However, it is important to acknowledge that our research is in its early
stages and that there are areas that require further exploration. Additional
research and development are necessary to refine the system flow, enhance the
accuracy of natural language processing, improve object recognition capabil-
ities and contextualization, expand the documentation vector store, and train
the AI agent with a broader range of knowledge and responses.

Furthermore, the wearable device requires more significant design efforts
prior to any rigorous field testing and validation to assess its performance,
reliability, and adaptability to real-world scenarios. User feedback and iter-
ative improvements will be crucial in enhancing the device’s functionality,
usability, and user experience.

Given the promising results obtained thus far, the continued research and
development of this wearable technology holds great potential for advancing
reach-back support in challenging operational contexts. It has the capacity
to revolutionize the way military personnel, first responders, and other pro-
fessionals operating in DDIL environments access critical information and
guidance.
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