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ABSTRACT

Human-agent interaction is commonplace in our daily lives, manifesting in forms
ranging from virtual assistants on websites to embodied agents like robots that we
might encounter in a physical setting. Previous research has largely been focused on
“behind-the-screen” interactions, but these might not fully encapsulate the nuanced
responses humans exhibit towards physically embodied agents. To address this gap,
we use virtual reality to examine how simulated physical embodiment and the relia-
bility of an agent (automated robotic crane) influence trust and performance in a task
simulating a quality assurance role and compare it to a “behind-the-screen” inter-
action. Out of 119 participants, the data revealed there is a marked behavioral shift
observed when reliability hits a 91% threshold, with no influence from embodiment.
Furthermore, participants displayed a tendency to trust and defer to the decisions
of embodied agents more, especially when these agents were not infallible. This
study accentuates the need for transparency about an agent’s capabilities and empha-
sizes the significance of ensuring that the agent’s representation is congruent with
the nature of the interaction. Our findings pave the way for a deeper understand-
ing of human-agent interactions, suggesting a future where these interactions might
seamlessly blend the virtual and physical realms.

Keywords: Human-robot interaction, Embodied agents, Signal detection theory, Virtual reality,
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INTRODUCTION

Research in human-agent interaction often employs an interaction paradigm
wherein participants interact with virtual agents through a screen, render-
ing the agents intangible. However, as computational advancements unfold,
Al systems are likely to extend beyond virtual domains, boasting tangible
embodiments that necessitate interactions with other entities, either human
or agent. Robots, for instance, play vital roles in tasks ranging from assem-
bly, packaging, space exploration, medical surgery, to mass production and
safety. The domain of human-robot interaction delves deep into the dynam-
ics of human engagement with physically represented robots, with a wide
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history of investigating trust and human responses to varied robot capabil-
ities and appearances (Chien et al., 2018; Esterwood et al., 2021; Li, 20135;
Natarajan & Gombolay, 2020; Tian et al., 2021; Tolmeijer et al., 2020; van
den Brule et al., 2014). Yet, a significant gap persists in the research that
measures trust through the manipulation of robot representation, tangible or
otherwise, and even more so through the lens of reliability. Traditional exper-
iments involving physical robots are often restricted by budgetary and safety
concerns. Virtual reality (VR), on the other hand, has quickly risen to promi-
nence for its ability to authentically simulate embodied physical interactions
in a risk-free, high-fidelity setting — a methodology that has proved instru-
mental in academic research (Lee-Cultura & Giannakos, 2020; Saffo et al.,
2020). Leveraging VR provides a comprehensive view of embodied interac-
tions. We aim to address the gap with a comparative analysis of trust models
between virtual and physical domains, especially in terms of how embod-
iment influences trust calibration and decision-making. Consequently, our
inquiry revolves around the following research questions:

. How are embodied interactions decisions made and trust formed during
collaborative decision-making tasks?

« Inwhat manner does embodiment influence perception of agent capability
across different reliability levels?

We conduct a mixed design with 119 participants to complete a quality
assurance scenario in either a computer or in VR, and find that both embod-
iment and reliability affect what and how decisions are made when paired
with an agent.

BACKGROUND
Embodied Agents and Their Impact on Trust

Within the domain of human-robot interactions, the role of embodied agents
stands out prominently. An embodied agent is a physical entity, driven by
computational logic that allows it to interact with the world, be it physically
or virtually. These entities, colloquially termed as “bodies”, are equipped
with appendages, maybe heads or hands, which enable their active engage-
ment with their immediate environment via sensors and motors (Tonkin et al.,
2017; Ziemke, 2001). Notably, these “bodies” do not require a human-like
representation; they can embody mechanoid or creature-like designs (Wang
et al., 2018). Users’ interactions with embodied agents significantly differ
from those with non-embodied counterparts (Hertzum et al., 2002). Such
embodiments influence users’ trust (Rae & Takayama, 2013), empathy (Seo
et al., 2015), and attention (Wainer et al., 2006). Humans tend to perceive
humanoid or anthropomorphized agents as more trustworthy and diligent
(Lawson-Guidigbe et al., 2020; Walters et al., 2009; Wang et al., 2018). This
leads to enhanced trust dynamics, including the ability to repair trust after
a malfunction or loss of performance (de Visser et al., 2016). Consequently,
system designers often resort to incarnating their agents as user interfaces,
manifesting as avatars, chatbots, or recommendation systems.
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Prior research widely suggests that the effectiveness of agent features, such
as reliability and transparency, shifts based on the context of their deploy-
ment. Yet, research yields inconclusive evidence on embodiment’s influence
over trust in human-agent collaborations. Herse et al., for instance, discerned
no embodiment impact in high-risk tasks under pressing timelines (Herse
et al., 2018). Conversely, Mollahosseini et al. contended that embodiment
enhanced the discernibility of robots’ facial cues, albeit restricted to cer-
tain emotions (Mollahosseini et al., 2018). Such disparities suggest that the
effectiveness of embodiment largely hinges on the context it is deployed in.

Tangible vs. Intangible Agents

The level of tangibility granted to embodied agents is notably diverse
(Schaffer et al., 2020). Tangible agents possess a tactile body, such as robots,
drones, or even physical avatars of virtual assistants like Amazon Echo. Their
intangible counterparts, however, are tethered to the virtual domain, but
might visually emulate tangible entities. Interactions with tangible agents are
uniquely shaped by social cues, cultural traditions, system expectations, and
varying degrees of acceptance towards anthropomorphic designs (Breazeal,
2004). For instance, tangible robot swarms incite distinct psychophysiologi-
cal human responses compared to a virtual simulation representing the same
(Podevijn et al., 2016). The dynamics of Human-Agent Teams are acutely
receptive to tangibility nuances. Although initial interactions suggest height-
ened trust and politeness towards tangible entities, sustained interactions
might dilute this trust (Kulms & Kopp, 2016). Intangible agents, being eco-
nomically efficient and widely accessible, persist as significant subjects of
study, holding promise for specific implementations.

Overall, our discussions converge on a signal detection theory (SDT) task,
orchestrated in the company of an embodied robot. By leveraging VR, we
aim to assess the interplay between reliability in decision-making and agent
embodiment, by using simulated tangibility. This endeavor seeks to discern if
reliability impacts, as observed in prior studies, extend to tangible realms, and
to ascertain the efficacy of virtual reality as a surrogate for tangible human-
robot interaction research.

METHODOLOGY

Simulation Design

We designed a collaborative decision-making scenario in the Unity game
engine, dubbed Warebhouse. Participants are tasked with the role of a qual-
ity assurance worker, who needs to ensure that several orders shipping from
warehouse have the correct item packed. If the package’s contents match the
order, they should send the order, and if they do not, they should reject it —
following an SDT-based task. However, two main constraints are presented.
First, the package cannot be opened to check its contents. Instead, workers
are provided with a package scanner that reveals the content inside. Unfortu-
nately, the scanners are unreliable, and present with a high amount of visual
interference. To assist with decision-making, every worker is partnered with



Validating Trust in Human-Robot Interaction Through Virtual Reality 91

a robotic teammate, that can determine the package’s contents and provide
a recommendation on whether a package should be sent or rejected. To test
for reliability, the accuracy of the recommendations will vary according to
condition. Second, worker performance is rated based on how quickly pack-
ages are correctly processed. Good performance is rewarded with a monetary
bonus at the end of the simulation.

REJECT = SEND

Figure 1: Two screenshots of the Warehouse scenario. (Left) presents the scenario as a
computer game interactable with a mouse and keyboard. (Right) presents a sideview
of the VR environment, where participants can grab and interact with the objects.

Depending on condition, participants will either complete the scenario
using a computer monitor with mouse input (Screen Representation condi-
tion) or in virtual reality using a Meta Quest 2 headset (VR Representation
condition). The Meta Quest 2 includes handheld motion-tracked controllers,
which allows for embodied interactions with the virtual environment when
processing orders during the simulation. As part of the scenario, partici-
pants are first instructed in the procedure to process an order, in the form
of onboarding videos. First, an order is received on the clipboard (an inter-
face popup in the Screen condition or a virtual object in the VR condition);
this order contains the item that must be sent, along with the colored tray that
must be placed before the robot brings the package from storage. Once the
correct tray is placed, the robot places the package in front of the participant
and waits for the participant’s initial decision. Once a decision has been made,
the robot states its recommendation in the form of an alarm or lack thereof.
When an alarm is sounded, it is a direct cue that it detected the item inside
the package does not match the order. Participants are then given the oppor-
tunity to change their decision considering the robot’s recommendation. This
procedure is repeated for all orders.

As mentioned, we introduce time pressure to place an ongoing urgency,
much like real-world workers must fulfill quotas. At every order, participants
can earn points if they complete an order correctly (true cases — true positives
and false positives) or lose points if they fail to do so (false cases — false pos-
itives and false negatives). Initially, the participant can receive a maximum
reward or a minimal penalty, respectively. As time progresses, the reward
and penalty are linearly scaled accordingly to de-incentivize participants from
delaying their decision, minimizing rewards and maximizing penalties at 10
seconds (selected through pilot testing). We expect that participants will use
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and adhere to the robot’s recommendation in their search to be speedy work-
ers (Rice et al., 2008), although they may still choose to rely on their own
visual acuity for their decisions. This reward structure then translates into a
bonus for their given compensation; prior research has shown this to be apt
at motivating participants to make sound and appropriate decisions (Bansal
et al., 2019; Zhang et al., 2020). Table 1 outlines the distribution of rewards
and penalties per trial during the Warehouse simulation.

Table 1. Reward matrix for the Warehouse simulation.

Recommendation
Send Reject

Package Match TP FN

t=20 t=10 t=20 t=10

+5 +1 0 -2

Mismatch FP N
t=20 t=10 t=20 t=10
-1 -5 +2 0

Experimental Design

For this study, we study two independent variables as discussed earlier: Rep-
resentation and Reliability. Representation describes whether the interaction
and the agent are embodied, divided in 2 levels: Screen and VR. Reliability
then describes the accuracy of recommendations participants receive from the
robotic teammate: 100% (Perfect), 91% (Ideal), 75% (Good Enough), 50%
(No Info). The Representation condition was presented between-subjects,
whereas the Reliability condition was presented within-subjects. This results
in a 4 block study with 24 orders during each block. For each block, partici-
pants complete 12 orders, receive an accuracy and speed report, and complete
the next 12 orders. The sequence and errors of the orders were standardized
across participants to maintain consistency and control trust recovery rates.
The Reliability blocks were counterbalanced using a randomized balanced
Latin square design.

The dependent variables we focused on are decision-making choices,
number of deferrals, and level of trust calibration. Overall performance is
measured by the amount of points earned across all 4 blocks, as described
by the reward matrix in Table 1. Decision-making was measured by the
amount of reliance and compliance demonstrated during the orders. Reliance
describes if a package was sent when the robotic teammate gave no alarm (i.e.,
no action given lack of a cue), whereas compliance describes if a package
was rejected when the robotic teammate gave an alarm (i.e., action when an
alarm is given). We inferred deferral from a combination of 2 explicit behav-
iors: for a given order, if participants used the scanner and fulfilled the order
in a combined time less than 2 seconds. This behavior could be construed as
automatically adhering to the robot’s recommendation.

Participants were recruited from Prolific, an online platform chosen for
its high-quality data compared to other crowdsourcing platforms, especially
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during the challenges of in-person recruiting due to COVID-19. After screen-
ing for colorblindness, corrected vision, and hearing impairments, approved
participants filled out a demographic survey and pre-survey metrics, then
installed and familiarized themselves with the Warehouse scenario through
instructional videos (where the robotic teammate was framed as imperfect)
and an attention-check quiz. They underwent 10 practice trials without
robot recommendations before tackling four blocks of 24 trials, each having
distinct robot reliability and emphasizing different calibration settings.

RESULTS

To establish patterns of behavioral trust, we focus on reliant and compli-
ant behavior when interacting with the robotic teammate. Both reliance
and compliance have been found to relate to over-trusting and complacent
behavior (Dixon & Wickens, 2006). For reliance, the ANOVA revealed a
main effect in the Reliability (F(3, 313) = 11.12, p < 0.001) and Time (F(1,
117) = 5.59, p < 0.05) factors, with an interaction between them (F(3,
351) = 45.18, p < 0.001). Opposite to compliance, after the mid-block feed-
back, reliance decreased in the No Info condition, where it increased in the
Ideal condition. Other reliability conditions remained unchanged. For com-
pliance, the ANOVA revealed a main effect in the Reliability factor (F(3,
351) = 17.47, p < 0.001), with an interaction between Reliability and Time
(F(3, 351) = 69.03, p < 0.001). Compliance was correlated with reliability.
After the mid-block feedback, compliance increased in the No Info condi-
tion, whereas it decreased in the Ideal condition. Other reliability conditions
remained unchanged.

Reliance
Representation = SCREEN Representation = VR

Reliability
0.7 B B ® Perfect
J- < - ©® |Ideal
0.6 1 4 4 ® Good Enough
@ Nolinfo
"~ . I - -
0.44 .- I- 1 1

SCREEN VR Before After Before After
Representation Midpoint Midpoint

_|

Reliance

Figure 2: Amount of reliance. The representation factor is deconstructed.
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Figure 3: Amount of compliance. The representation factor is deconstructed.
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Regarding the amount of deferrals, the ANOVA revealed only a main effect
in the Time factor (F(1,25) = 18.04, p < 0.001), along with a near-significant
interaction with the Representation factor (F(1, 25) = 3.43, p = 0.07). It
is interesting to note that instances of deferral were higher when robots are
embodied in the VR condition within Representation. Additionally, this inter-
acts with Time, as the number of deferrals increased after the mid-block
feedback, likely an effort from participants to increase their decision-making
speed and rewards. If we plot the amount of deferred trials over time, we can
see a trending increase that is higher in the VR Representation condition.

% of Deferrals

Representation = SCREEN Representation = VR

0.5

"l :T ! :l

0.0~

Reliability
Perfect

Ideal

Good Enough
No Info

% of Deferrals

[ X NN

SCREEN VR Before After Before After
Representation Midpoint Midpoint

Figure 4: Proportion of deferred orders. The representation factor is deconstructed.
The VR condition has a higher number of deferred trials.

Deferrals over Time
Representation = SCREEN Representation = VR
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Figure 5: Deferred trials across time. The VR condition had a greater variance in
deferred trials.

CONCLUSION

We conducted a study to investigate the effect of reliability and embodiment
on performance and trust (n = 119), to fill the research gap on how dynamics
in the human-agent teaming paradigm holds within a human-robot collabo-
ration context, which is one of the representative goals in the development
of Al agents. We observe that at 91% reliability, reliance drastically increases
after the mid-block feedback (compliance changing symmetrically opposite).
We infer that after the mid-block feedback, participants began to send more
packages in an attempt to complete more orders, as they deemed the relia-
bility satisfactory to deal with some errors. This behavior remained constant
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across representations, indicating what decisions are made are independent
of embodiment, but tied closer to reliability. Closer tied to embodiment
is how we make decisions: the results show that the number of deferrals
increased steadily over time with embodied agents. We expected deferrals
to increase as participants completed orders, yet a statistically significant
increase in the VR Representation condition was observed. The combina-
tion of these findings reveals 2 major insights: 1) when an agent is presented
as imperfect, embodiment changes trust calibration, as users defer their deci-
sions to the agent to a greater degree, regardless of reliability. Embodiment
could then allow for a higher level of trust calibration, resulting in more
accurate and appropriate deferrals; and 2) humans can reasonably calibrate
their expectations over Al systems with little to no feedback or transparency,
with a single point of feedback being enough to cause significant changes in
behavior. Future work should focus on comparing the results from a sim-
ilar decision-making task (such as the one presented in this study) with a
physical robot, to validate how decision-making is processed in the real
world.
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