Intelligent Human Systems Integration (IHSI 2024), Vol. 119, 2024, 120-126 AH FE
https://doi.org/10.54941/ahfe1004475 |nternational

The Neural Algebra and Its Impact on
Design and Test of Intelligent Systems

Thomas Fehimann' and Eberhard Kranich?

TEuro Project Office, 8049 Ziirich, Switzerland
2Euro Project Office, 47051 Dortmund, Germany

ABSTRACT

The Graph Model of Combinatory Logic (Engeler, 1981) is also a mathematical model
for “how does the brain think” It attempts to explain how complex scripts of behaviour
and conceptual content can reside in, combine, and interact on large neural networks
(Engeler, 2019). This has an impact on building intelligent systems that interact with
humans. Intelligent systems should employ the same kind of concepts humans do;
otherwise, their actions remain incomprehensible and erratic to human users, con-
cepts can be represented in the Graph Model by using the “Lambda-Theorem” found
by Barendregt (Barendregt, 1977). Both the Graph Model and the mathematical model
for the human brain have been published as part of Theoretical Computer Science
and remain thus out of the reach of normal Al engineers. Nevertheless, they suggest
solutions for today’s problems with Intelligent Systems, such as autonomous vehi-
cles mastering the traffic in Palermo, or robots caring for people and working together
with them. Intelligent Systems need to adhere to concepts quite like humans that fol-
low certain rules in their behaviour. The paper explains what a “Concept” is in Al,
how to state requirements for Al, and how to test them. Intelligent Systems using con-
cepts behave like humans, following rules but are still able to break the rules when
need arises, and can be certified for safety and security; solving certain difficulties for
Learning Machines that can learn and unlearn.

Keywords: Combinatorial logic, The graph model, Neural algebra, Artificial intelligence,
Learning machines, Intelligent systems

INTRODUCTION

Intelligent systems powered by tools of Artificial Intelligence (Al) such as
neural networks (NN), deep learning (DL), support vector machines (SVM),
large language models (LLM) and generative pretrained translators (GPT)
have a disturbing impact on humans: There are unreliable (Gunn, 1998).
And their responses remain unexplainable (Phillips, et al., 2021).

Sensors do most often, but not always, recognize signals. Image processing
can often, but not always, distinguish wolves from dogs, or chihuahua from
mandarins. This makes them suspect to humans who are accustomed to trust
others based on a social consent. We trust a taxi driver because he is licensed,
and we consider someone as knowledgeable because other do as well, or
because he or she has a degree as master or doctor. Who guarantees me that
responses from ChatGPT are reliable, and correct? How can I ever be sure
that an autonomous car taxi will safely take me to my destination?

© 2024. Published by AHFE Open Access. All rights reserved. 120


https://doi.org/10.54941/ahfe1004475

The Neural Algebra and Its Impact on Design and Test of Intelligent Systems 121

Al can not only learn; it also can unlearn. If trained by a human, a
neural network will effectively copy its biases and, in case, any ruthless
behaviour it exposes. This is the motivation why we should spend some effort
in understanding what knowledge is (Fehlmann & Kranich, to appear, 2023).

The Graph Model of Combinatory Logic as a Model for Knowledge

Schonfinkel and Curry developed Combinatory Logic (Curry & Feys, 1958)
to avoid the problems introduced when using logical quantifiers, and Church
invented Lambda Calculus as a rival but equivalent formalism (Church,
1941). Combinatory logic is an algebra with just one operation, the applica-
tion of one combinator to another, without considering anything resembling
typed terms. With combinatory logic, one had a foundation for mathematics
that worked without quantifiers and thus avoided the undecidability problem
for predicate logic, found by Godel (Godel, 1931).

We start with a non-empty set Ly, represented as nodes in Figure 1. £y
constitutes the base of our recursively defined arrow terms. Let a; be a finite
set of arrow terms, and b another arrow term. Then, all terms of the form (1)
are arrow terms:

a; —> b (1)

The name originates from the intended meaning of neurons a; firing
towards a common destination b. Arrow terms represent a directed graph
where a; depict the vertices of origin and b the destination vertex. Engeler
has shown that the recursively defined algebra of arrow terms sets consti-
tutes a model of combinatory logic (Engeler, 1981), because it contains an
application operation (2) that gives the graph model an algebraic structure
modelling application in combinatory logic.

MeN = {b|3a; > b e M; a; € N} (2)

The role of the index 7 in g; is that of a choice function that selects a finite
subset of some observation class, namely the set of arrow terms a.

N:(ajax)k

MsN=(x;,~>y)

Figure 1: The graph model of combinatory logic — visualization with application M e N.



122 Fehlmann and Kranich

If Lo, £1,L2,... denote the nesting level of arrow terms, the union of all
levels |J £; is closed under application operation (2). Arrow terms without
a single arrow are elements of £ and are called Observations. Arrow terms
that are not observations are called Concepts. They contain one arrow term
level at least. The recursivity of the definition of the arrow term elements | J £;
becomes quite natural with the visualization in Figure 1. It simply means that
the graph is infinite and not bounded by anything like basic observations. An
observation can always be represented by any single node in the graph; a
concept by two adjacent neurons connected by a “firing” arrow.

Note that neurophysiologists will have a hard time identifying something
that is not a concept in our brain. The idea that sensor cells are the £y ele-
ments in our brain is a logical construct that is not supported by real physical
observations. In intelligent systems, we might consider observations to be the
only output of a sensor. However, sensors can also consist of a different neu-
ral network of their own. In the human body, we find neural structures that
respond to external stimuli such as light, heat, or motion, but these are rarely
single cells.

The graph model also includes lambda terms (Barendregt & Barendsen,
2000). Lambda Terms have the form ix.M where x represents a “vari-
able” in M, allowing for an application of the Lambda term Ax.M on some
argument N

Jx.MeN (3)

In this case (3), N replaces all occurrences of x in M. For formal defini-
tions, consult (Fehlmann, 2020, p. 5).

The graph model of combinatory logic can be used to explain how the
human brain works (Engeler, 2019). In fact, the directed graphs represented
by arrow terms can be interpreted as a neurological model representing
neurons firing on others and causing a reaction.

Barendregt’s Lambda calculus (3) means that programmable terms exist
in the context of knowledge, making fixed rules part of general knowledge.
For humans, this is nothing surprising; for machines, it is good to know that
rules exist like those used in social interactions between humans.

Requirements for Intelligent Systems

When designing intelligent systems, it is not sufficient to specify the objects
that it must be able to recognize, but also the concepts that it must be able
to learn and especially those that have a compulsory nature and must be
implemented using Lambda concepts.

Thus, requirements are classified in three categories that correspond to
three different technical solutions. The first category entails the objects an
intelligent system should be able to recognize for physical interaction. It is
assumed that the system uses sensors, such as cameras, touch sensors, and
microphones, to find its way in its surroundings. The second category are
concepts that the system learns, using machine learning and by training neural
networks. Both, objects, and trained concepts, cannot be determined with
certainty; there is always a small error range where the system fails. This



The Neural Algebra and Its Impact on Design and Test of Intelligent Systems 123

might occur because sensors are not accurate enough, or by malfunction, or
because training always is limited, leaving some uncertainty and gaps. Such
requirements have a significant degree of indeterminacy that in turn is more
difficult to validate.

Compulsory concepts, in contrary, can be identified by Functional User
Requirements (FUR) as for traditional programs, defining deterministic func-
tionality and with the possibility to validate their implementation under
controlled conditions, like testing software.

Table 1 shows the three categories of requirements that should be clearly
identified and distinguished in the requirements elicitation process. Tradi-
tional functional requirements are always in category three, as there is no
level of uncertainty in implementation allowed. Strictly speaking, functional
tests can only be performed for category 3 requirements; however, the other
categories shall be subject to Autonomous Real-time Testing, as explained in
a forthcoming chapter, and the book (Fehlmann, 2020).

Table 1. Requirements for intelligent systems.

Type Requirement Technical Solution
(1) What objects should it recognize? Training Models
o Classical Artificial Intelligence « Samples from a typical world
« Pattern Recognition « Deep Learning, continuous updates
« Tagging scenarios & objects o Neural networks
(2] What concepts should it learn? Learning Concepts
« Some concepts are easier to learn o Learning to perform actions that
than being programmed. are typical in its environment.
« Continuously adapting to user’s « Continuously adapting by
behaviour and preferences collecting and evaluating
experiences
(3] Which concepts are compulsory? Lambda Concepts
o Safety « Reacting on specific scenarios
« Security « Predefining behaviour
o Legal rules « Compulsory decisions

How to Make Artificial Intelligence Reliable

Technically, based on the requirement types in Table 1, it is straightforward:

« Build intelligent systems according to requirements that contain type @,
type @, and type ® requirements. Use the type ® requirements to let the
intelligent system stick to certain rules and behaviour, thus looking reliable
to humans,

« Test the intelligent system accordingly:

o Type @ requirements cannot be fulfilled at 100% but sensors, neural
networks and whatever else can produce observations of the physical
environment have a certain reliability level;

o Type @ requirements address concepts that must be learned, be it
supervised or unsupervised, and they too might still contain a failure



124 Fehlmann and Kranich

rate that exceeds 0%. Thus, their reliability is limited to something
below 100%:;

o Type ® requirements, in turn, address conventional programming.
Programmers implement rules as Lambda concepts in an intelligent
system that behaves predictably like a traditional machine.

With such a strategy, intelligent systems behave predictably and thus create
trust among humans.

Socially it is less straightforward. While humans pass exams to get certified
or licensed, with intelligent systems this is less easy — although for certain
intelligent systems such as medical instruments or vehicles for daily traffic,
the processes exist. But the existing processes do not yet address the specific
challenges by systems that learn and change behaviour while in operation.

However, unless testing has been adapted to the needs of intelligent system,
the social aspect is not covered. People must trust intelligent systems before
they hand oneself over to such systems. You cannot force trust; you must
design the system to enable trust.

How to Test Intelligent Systems

Testing of intelligent systems is not something that can be done before release;
it must occur anytime, continuously, during its operational use or while not
in use. Moreover, users must be notified about the nature and outcome of
tests. Only then people will board an autonomous car, or taxi, with the same
confidence that they exhibit against human drivers.

Intelligent systems learn and change behaviours. Testing before release is
not an option, because after release the responses to certain incidences will
change. Intelligent systems adjust to their environment, or to their users and
owners.

Today’s software testing practices are way behind the age of digitalization.
No generally adopted metrics exist for test intensity that can be applied to
compare competing intelligent systems. It remains unclear whether the entire
functionality required to control intelligent systems is tested at all, or only
the part of the system that is executed by self-written code. Because software
changes continuously, with Continuous Integration/Continuous Delivery,
tests executed at release quality gates only reflect the original state of deliv-
ery, in isolated environments. Intelligent cyber-physical systems affect the real
world, unfortunately, and they do continuously. Continuous Testing must
therefore cover the entire life cycle, including operations.

For this reason, we proposed Autonomous Real-time Testing (Fehlmann,
2020). It means that:

« Tests are model-based to cover all functionality, including services from
the cloud or from Al-components;

o Tests are measured by functional size according to ISO/IEC 19761
(ISO/TEC 19761, 2019) for comparing test size with functional size;

o Test suites are continuously expanded by new test cases, applying Al
methods to meet user’s needs;



The Neural Algebra and Its Impact on Design and Test of Intelligent Systems 125

« Tests are fully automated and can occur autonomously when the product
1S not in use;

. Tests of Lambda concepts are included and made explicit;

« The user of the intelligent systems gets informed about the status and
results of continuous testing while operating the intelligent system.

Autonomous Real-time Testing is not yet available; technology is mostly
there but its implementation is lagging. Al-based tools can automate test-
ing by creating suitable test cases and executing them. But this is not
enough. Users must know about the status of tests, and understand what
is being tested, otherwise they will probably never trust something such as an
autonomous car.

CONCLUSION

Human machine communication becomes a lot more complicated with the
advent of Al in daily products. The experiences made with ChatGPT have
taught us that the technical possibilities produce much scepticism even among
promoters of the technical progress. Indeed, the fact that ChatGPT uses Wol-
fram Research’s Wolfram|Alpha (Wolfram, 2023) as a source for knowledge
about mathematics, physics and natural science shows that adding Lambda
concepts to knowledge is nothing unexpected, or strange. Even if promot-
ers of Al stress the potential of learning concepts, only Lambda concepts can
ensure safety standards and create trust as needed to make intelligent systems
successful as consumer products.

It’s all a matter of human-machine interaction that must be properly

addressed.

ACKNOWLEDGMENT

The authors would like to acknowledge Lab42 in Davos, Switzerland, for
helping to understand the need for Lambda concepts in Al

REFERENCES

Barendregt, H. & Barendsen, E., 2000. Introduction to Lambda Calculus. Nijmegen:
University Nijmegen.

Barendregt, H. P., 1977. The Type-Free Lambda-Calculus. In: J. Barwise, Hrsg.
Handbook of Math. Logic. Amsterdam: North Holland, pp. 1091-1132.

Church, A., 1941. The Calculi of Lambda Conversion. Annals of Mathematical
Studies 6.

Curry, H. & Feys, R., 1958. Combinatory Logic, Vol. I. Amsterdam: North-Holland.

Engeler, E., 1981. Algebras and Combinators. Algebra Universalis, Band 13,
pp. 389-392.

Engeler, E., 2019. Neural algebra on “How does the brain think?”. Theoretical
Computer Science, Band 777, pp. 296-307.

Fehlmann, T. M., 2020. Autonomous Real-time Testing — Testing Artificial Intelli-
gence and Other Complex Systems. Berlin, Germany: Logos Press.

Fehlmann, T. M. & Kranich, E., to appear, 2023. A General Model for Representing
Knowledge - Intelligent Systems Using Concepts. Athens Journal of Sciences.



126 Fehlmann and Kranich

Godel, K., 1931. Uber formal unentscheidbare Sitze der Principia Mathemat-
ica und verwandter Systeme 1. Monatshefte fiir Mathematik und Physik, 38(1),
pp- 173-198.

Gunn, S., 1998. Support Vector Machines for Classification and Regression,
Southampton: ISIS Technical Report, University of Southampton.

ISO/TEC 19761, 2019. Software engineering - COSMIC: a functional size measure-
ment method, Geneva, Switzerland: ISO/IEC JTC 1/SC 7.

Phillips, P. J. et al., 2021. Four Principles of Explainable Artificial Intelligence,
Washington DC, USA: NIST - National Institute of Standards and Technology.
Wolfram, S., 2023. What is ChatGPT doing ... and Why Does it Work?. Champaign,

IL: Wolfram Media, Inc.



	The Neural Algebra and Its Impact on Design and Test of Intelligent Systems
	INTRODUCTION
	The Graph Model of Combinatory Logic as a Model for Knowledge
	Requirements for Intelligent Systems 
	How to Make Artificial Intelligence Reliable
	How to Test Intelligent Systems

	CONCLUSION
	ACKNOWLEDGMENT


