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ABSTRACT

Artificial intelligence (AI) and machine learning (ML) systems have seen tremendous
growth within the last few decades. Even with unprecedented new levels of auton-
omy for artificial reasoning systems, there are still challenges that remain. Challenges
related to causal reasoning act as a roadblock for AI/ML systems to achieve human-like
intelligence. For these systems to achieve human-like intelligence they must be able to
gather causal information from given information. While causality for machine learn-
ing has made progress within the past years, there is still a lack of ability for AI/ML
systems to generate causal relations from image datasets. To this end, this paper pro-
poses a novel new perspective on discovering causal relations with image data by
utilizing existing tools and methodologies.

Keywords: Artificial intelligence (AI), Machine learning (ML), Causal learning, Causal discovery
image datasets

INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) have made tremen-
dous advancements within the past decade leading to unprecedented levels
of integration within human lives. AI/ML systems have been utilized for
a plethora of applications ranging from recommender systems to biomedi-
cal systems for tumour/cancer detection. This level of integration has led to
an increased interest for autonomous systems capable displaying of human-
like intelligence. Research and development for AI/ML systems capable of
human-like intelligence is hindered by the challenges associated with causal
learning. The vital relationship between the cause and effect which comes
naturally to human beings, has yet to be perfected by AI/ML systems. Even
with the deployment of new state-of-the-art autonomous systems such as
Tesla’s fleet of electric vehicles and Boston Dynamics fleet of Spot and Atlas
robots, these AI/ML systems still lack capability to identify the fundamental
cause and effect relationships that are embedded into every action (Rawal
et al., 2022). Towards this new frontier of human-like intelligence for AI/ML
systems there has been an increased interest in causality for AI/ML systems
leading to the coining of new terms such as causal learning (CL).

Causality is the cause-and-effect relation between a treatment and an out-
come. It has been a fundamental scientific concept for numerous discoveries.

© 2024. Published by AHFE Open Access. All rights reserved. 127

https://doi.org/10.54941/ahfe1004476


128 Rawal et al.

Here the cause describes the “why”whereas the effect describes the “what”.
It is often used interchangeably with correlation in an incorrect context.
However, it has been well defined that correlation does not imply causation.
While a critical concept for AI/ML and computer science, misrepresenting
causation as correlation can have unwanted effects. Correlation is the rela-
tionship between two variables that follow a specific trend, while causality
is the cause-and-effect relation between the two variables. Here the cause
is responsible for the effect, and the effect relies on the cause (Morgan and
Winship, 2015, Pearl, 2018). Causal learning refers to the study of these
cause-and-effect relations between different variables in any given datasets
for AI/ML systems. Therefore, causal learning should be viewed as a criti-
cal core component of any artificial reasoning systems, not just an ad-hoc
feature.

Figure 1: Yearly publications for causality, causal discovery, and causal learning. (Data
derived from SCOPUS.)

The field of causal learning or causality for AI/ML systems is still fairly new
and in its infant stage. While causality as a field of study has been around for
quite some time and is well represented in literature, causal learning has only
recently seen an increase in the research outcome. Even then, when com-
pared to the other research subjects the number of publications each year
highlights the relatively young age of the research field (Figure 1). Due to
the relatively young age of the field, there are still challenges such as the
lack of ground truth and methods for evaluating causality for multi-modal
datasets that limit its progress. Challenges associated with the lack of ground
truth for observational datasets have been widely acknowledged in literature
(Rawal et al., 2021, Cheng et al., 2022, Rawal et al., 2022). To achieve causal
learning for AI/ML systems novel new methods and perspectives need to be
explored, as experimental data is not always feasible, and researchers must
rely on observational datasets. While there have been studies on the use of
observational datasets, most investigations have focused on causality from
tabular datasets (Rohrer, 2018, Nichols, 2007, Maathuis et al., 2010). There
is a gap of knowledge in literature for both methods and perspectives on gen-
erating causal relations in observational image datasets. In this vision paper,
we present a novel perspective for causal learning to generate causal relations
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from observational image data via causal discovery. The paper is organized
as follows: Section 2 provides the overview of causal learning and causal dis-
covery, Section 3 provides the current state of the art for causal discovery for
image datasets and provides our perspective, while Section 4 highlights the
challenges and perspectives. Section 5 includes concluding remarks.

OVERVIEW OF CAUSAL LEARNING

As mentioned in the previous section causality is the relation between a cause
and its effect (Guo et al., 2020). For AI/ML this goes beyond statistical corre-
lation and association in the data.While correlation highlights specific trends
between variables in the data, causation defines the cause-and-effect rela-
tions between those variables. Causality for AI/ML is the investigation of the
change in the output(prediction/classification) of an AI/ML system caused
by the change in a variable when another variable is modified/manipulated.
Here the variable being modified is called the treatment, and the variable
whose change is being investigated is called the outcome. Variables in the data
that can affect both the treatment and the outcome are called confounders,
and other background/noise variables within the data are referred to as the
covariates.

Causal relations between the variables in data can be classified into three
categories as listed by Judea Pearl’s causal hierarchy: association, interven-
tion, and counterfactuals (Pearl, 2009a, Pearl, 2019, Pearl, 2018). The first
level of the hierarchy, association refers to the simple statistical correlation
between variables in the data and is the building block for AI/ML systems
where correlations are derived from the data to make informed predictions.
The second level of the hierarchy, intervention is where each action’s effect
is investigated. Here specific treatment’s modification/manipulation is inves-
tigated via the causal structure between variables. The final level of the
hierarchy is called the counterfactuals, and it encompasses both association
and intervention. Counterfactuals are utilized to generate causal relations
underlying both the association and intervention levels to make predictions
based on unknown outcomes. For AI/ML causal learning is utilized to answer
two basic questions within a plethora of applications:

• To what extent does a change in one variable (treatment) have an impact
on the target (outcome)?

• To cause a specific change in the target (outcome) which variable/s
(treatment) needs to be modified upon?

These two questions are basis of causal learning which can be classified
into two categories: causal discovery and causal inference (Gelman, 2011,
Peters et al., 2017). Causal discovery is utilized in AI/ML to highlight the
causal relations between the various variables within the data, whereas causal
inference can be applied to investigate the causal effects of different treat-
ments on an outcome. Investigations of causal relations via either of the
two causal inference or causal discovery can be done through the two avail-
able formal frameworks called structural causal models (SCMs) and potential
outcome framework. Structural causal models consist of causal graphs and
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structural equations and provide a holistic theory for causality (Pearl, 2009a,
Guo et al., 2020, Pearl, 2009b, Yao et al., 2021). For this article, we
focus on generating causal graphs from observational image datasets. They
describe the causal effects between the different variables via a directed graph
where different nodes represent different variables like outcome, treatment,
confounders and covariates (Guo et al., 2020).

Causal Discovery for Machine Learning

Causal discovery can be utilized in numerous applications to generate causal
relations within the data. This can be done via several available methods
within literature. Here the focus is on the variables that have a cause-and-
effect relation, where modifying variable A can have effects on another vari-
able B. This is done by generating causal relations between the variables for
the data identified by statistical relations (Spirtes et al., 2000, Schölkopf et al.,
2012). Three general algorithms are available to identify causal relations
via causal discovery: Constraint-based, Score-based and Functional Causal
Model-based algorithms (Malinsky and Danks, 2018). Functional causal
models are based on the structural equations to identity causal relations,
whereas score and constraint-based models are based on statistical relations
to identify causal relations and generate causal graphs (Yao et al., 2021).

Constraint-based algorithms identify the causal relations within data that
satisfy the conditional independence based on the faithfulness assumption
to generate causal graphs. Score-based algorithms were developed to over-
come the faithfulness assumption of the constraint-based models and replace
these with the goodness of fit tests. Based on the three general algorithms
various models have been proposed in literature such as the Peter-Clarke
Algorithm (Spirtes et al., 2000), IC algorithm and its variants (Spirtes et al.,
2000, Pearl, 2009b, Fukumizu et al., 2007, Kalisch and Bühlman, 2007,
Le et al., 2016, Ramsey, 2014, Sejdinovic et al., 2013, Zhang et al., 2012)
for constraint-based models. Examples of score-based models in literature
include the Bayesian Information Criterion (BIC) score (Schwarz, 1978),
Factorized Normalized Maximum Likelihood (NML) universal model (Roos
et al., 2008), Bayesian Dirichlet score (Heckerman et al., 1995), Greedy
Equivalent Search (GES) (Chickering, 2002), Fast GES (Ramsey et al.,
2017), and the adaptation of the Greedy SP algorithm by Wang et al (Wang
et al., 2017). For functional causal models, examples include the Linear
Non-Gaussian Acyclic Model (LiNGAM), and the Independent Component
Analysis LiNGAM (ICA-LiNGAM) (Shimizu et al., 2006), DirectLiNGAM
(Shimizu et al., 2011), and auto-regressive LiNGAM (Hyvärinen et al., 2010).
Other additional methods have also been proposed for investigating causal
relations such as the re-weighting, stratification, tree-based, representation
learning and meta-learning methods (Yao et al., 2021). Stratification meth-
ods utilize classification/blocking to modify confounders (Imbens and Rubin,
2015). Matching based methods reduce the estimation bias to estimate the
confounders, whereas tree-based models utilize decision trees. Examples of
these methods include Classification and Regression Tree (CART) (Athey and
Imbens, 2016), Bayesian Additive Regression Tree (BART) (Chipman et al.,
2006, Chipman et al., 2010), and Random Forest methods (Wager and Athey,
2018).
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Causal Discovery for Image Data

Since the field of causal learning is still in its infancy, all the methods and tech-
niques mentioned above for causal discovery have been mainly investigated
for tabular data. Numerous studies have reported on the use of causal dis-
covery for various different applications. However, the utilization of causal
discovery in image datasets has not been investigated as much. Even though
there are some studies that investigate the use of causal discovery for images,
more datasets, methods, techniques and concepts for causal discovery of
images are needed. In this section we provide a brief vision for utilizing
causal discovery for images using a novel perspective of existing methods
and techniques.We also provide a brief overview of existing studies that have
investigated causal discovery for images.

Castro et al., highlighted the importance of causality and causal learning
for utilization in medical imaging applications (Castro et al., 2020). They
presented the use of causal relationships between images and their annota-
tions using causal graphs. For given medical images the study presented the
use of causal and anti-causal tasks, where causal tasks are when an effect is
predicted from a cause whereas, the cause is predicted from the effect in the
anti-causal task. An example of a causal graph for cancer classification using
medical images is presented. The authors also highlighted the advantages of
causal learning for tackling challenges for medical imaging including data
scarcity and data mismatch.

Li et al., presented a novel causal image synthesis method of generating
causal models between MRI images and clinical/demographic variables for
patients with Alzheimer’s disease (Li et al., 2023). The study utilized struc-
tural causal models in conjunction with a styled generator to highlight causal
relations and synthesize the images. The authors proposed the use of low
dimensional latent feature representations of high dimensional 3D images to
build causal relations between the image and the tabular data. Using these
techniques, the authors are able to generate counterfactual 3D Brain MRI
images and causal relationships between the tabular variables and the MRI
images.

Chalupka et al., presented a framework to generalize causal learning
in settings where the causal variables are reconstructed from the micro-
variables for visual causes in images (Chalupka et al., 2014). The authors
defined the visual cause as “a function/feature of raw image pixels that has a
causal effect on a target behaviour of a perceiving system of interest”. Here
causal reasoning is employed to obtain improvement on the performance of
correlation-based classifiers. The causal manipulator network presented in
the papers can generate causal features from the data and perform causal
modifications based on these features. From a causal discovery perspective,
the authors present the utility of well-defined causal macro-variables to be
used in causal graphs.

Anciukevicius et al., presented a scene understanding framework for
object-centric 3D scenes capable of generalizing to out-of-distribution images
(Anciukevicius et al., 2022). A causal generativemodel is designed to replicate
the physical process of camera’s image production for a multi-object scene.
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A compositional generative causal model is utilized by the framework over
multi-view images and the scenes depicted in the images.

Lopez-Paz et al., presented the Neural Causation Coefficient (NCC) to
learn causation from labelled large image datasets (Lopez-Paz et al., 2017).
The authors present the footprints to highlight the existence of “causal dis-
position” of object categories in images. The authors investigated causal
discovery of observational image datasets by using a classifier to gener-
ate causal relations between pairs of random variables with samples from
joint distribution. They employed the causal direction classifier to differen-
tiate between object features and context features in static images. Using
experiments on the MNIST dataset the study demonstrated the existence of
observational signals which highlight the causal relations between objects.
The study highlights the presence of causal information between objects and
contexts within images using high order statistical properties of the datasets.

While these studies all present novel and practical techniques to utilize
causal discovery for images, there is still a lack of a proper framework for
generating causal graphs directly from image datasets. Therefore, we propose
a novel framework of existing methodologies to generate causal relations
via causal graphs from observational image datasets. Mainly we propose to
use existing tools/techniques into a workflow to generate causal graphs from
observational image datasets. This consists of the following four components:

• Feature extraction from images.
• Conversion of extracted features to tabular data.
• Causal discovery on the tabular data.
• Comparison of the causal features to ML model.

Figure 2: Proposed workflow for investigating causal discovery with image datasets.

Using the framework displayed in Figure 2 we propose to investigate the
causal discovery in image datasets from existing tools and methodologies.
The first step of the proposed framework is feature extraction from images.
Feature representations from raw images are to be extracted and saved in
a tabular format to be utilized for causal discovery using existing methods
such as auto-encoders or deep neural networks. Once the extracted features
are saved as tabular data, causal discovery can be performed in the tabular
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data via the generation of the causal graphs. The tabular data should con-
sist of multiple features for each label. For this step a multitude of existing
tools can be utilized such as the Causal Discovery Toolbox, Tetrad toolbox,
and gCastle. The features with a direct causal link to the label can then be
explored/investigated further usingMLmodels. The comparison of the causal
features to the features from correlation-based feature relevance can provide
insights into potential biases within the data or the model. While there are
some studies in literature that have focused on extracting causal relations
from image datasets, the proposed study here is the first to extract causal
features by generating causal graphs directly from the observational image
datasets.

CHALLENGES AND PERSPECTIVES

Even though methods for causal discovery have made great progress, there
are still challenges that hinder research for the use of causality for image
data. Some of the challenges associated with causality in-general are also
relevant for image datasets such as the lack of experimental datasets, the lack
of ground-truth for observational datasets, causal discovery for time-series
data, and the issues related to bias within the data and the model algorithms.
The lack of experimental image data has been a major challenge for causal

reasoning research for image modality. For example, in biomedical applica-
tions of causality, such as tumor detection using MRI/CAT scan images, the
lack of datasets large enough or fit enough to be trained and tested by ML
models has been a major issue. Even though causal learning from observa-
tional tabular data has made great strides in the past few years, there is still
a scarcity in literature highlighting the successful utilization of observational
image data. It is not always feasible or practical for researchers to get access to
experimental data. In lieu of experimental datasets synthetic data, emulating
real world conditions that imitate experimental data can be utilized.
The absence of ground truth for observational image datasets is another

major challenge for causal learning. This relates back to the lack of experi-
mental data accompanied by the ground truth. However, for observational
image datasets, when used for any AI/ML applications with causal learning,
the lack of ground truth questions the validity of the data and hence the mod-
els themselves. An alternative for image datasets is the use of annotated labels
as ground truth when experimental data with ground truth is not available.
Model selection plays a crucial role for causal learning via observational data.
Due to the lack of explicit AI/ML models for causal learning, the choice and
utilization thereof will depend on the specific applications. Current studies
in literature, such as the one by Moraffah et al., provide an excellent review
of available causal interpretable models with criterions and metric for model
evaluation (Moraffah et al., 2021, Kusner et al., 2017, Arjovsky et al., 2019).
Bias in data – has been amajor challenge formost (if not all) applications of

AI/ML systems. For causal learning, the ability to detect and mitigate biases
from raw images will also be crucial for the practical deployment of these
causal AI/ML systems. New laws and regulations around the world, such
as European Union’s GDPR, have increased the need for fair and unbiased
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predictive models. While experimental studies can mitigate bias to a certain
degree via randomization, data imperfection in image datasets such as class
imbalance, scarce/weak annotations, noise, and human errors can lead to
unwanted bias within the data. From a big-data perspective, the presence of
sample bias in observational data is also of concern and needs to be accounted
and mitigated (Guyon et al., 2010, Moraffah et al., 2020, Stips et al., 2016).

CONCLUSION

AI/ML systems need to go beyond simple correlation to causation to achieve
human-like intelligence. Therefore, causal learning is bound to play a crucial
role in taking artificial reasoning systems into the next generation of advance-
ments. For any AI/ML system dealing with image data, the ability to generate
causal relations from observational images will be of great importance. This
paper presented an overview of causality and causal learning for AI/ML sys-
tems. We proposed a new framework/workflow to investigate causality in
observational image datasets. By utilizing existing tools and methodologies
causal graphs can be generated via feature extraction for large image datasets.
We also highlighted some of the challenges that must be addressed for the
field of causal learning to advance into the next stage.
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