
Intelligent Human Systems Integration (IHSI 2024), Vol. 119, 2024, 144–153

https://doi.org/10.54941/ahfe1004478

Magenta: Metrics and Evaluation
Framework for Generative Agents
Based on LLMs
Sudarshan Kamath Barkur, Pratik Sitapara, Sven Leuschner,
and Sigurd Schacht

University of Applied Sciences, 91522 Ansbach, Germany

ABSTRACT

Large Language Models (LLMs) have gained growing significance within the realm
of Natural Language Processing (NLP) and have showcased their immense potential
across a wide spectrum of applications, including the development of Autonomous
Agents. Through the meticulous assessment of their performance and subsequent
enhancements, researchers and engineers can continue to develop advanced AI
systems that can address user needs and perform tasks with high accuracy and effi-
ciency. In this paper, we discuss the current state of evaluation of language models
and autonomous agents and propose a new evaluation benchmark for autonomous
agents, introducing two metrics - effort and success rate. Effort measures the num-
ber of steps or actions the agent takes to complete a given task, whereas the success
rate measures the correctness or quality of the agent’s output. We argue that these two
metrics capture important aspects of the agent’s performance and trade-offs. We show
that our benchmark can provide useful insights into the strengths and weaknesses
of different agents. As a work in progress, we suggest standardizing the evaluation
process of LLMs by leveraging existing frameworks and transforming them into an
automatic evaluation framework that evaluates all kinds of language models, agents,
and LLM-based applications. This approach aims to provide a comprehensive and
unified evaluation method, enabling the users to make informed decisions when
selecting and fine-tuning LLMs for their specific needs and calculating the accuracy
of language-based models and applications.

Keywords: Large language models, Autonomous agents, Evaluation, Llama, Generative agents,
LLMs, GPT, Framework

INTRODUCTION

Natural Language Processing (NLP) is a field of research that aims to create
systems and applications that can understand and generate natural language.
It forms a basis for the Large LanguageModels (LLMs) which are probabilis-
tic models that can produce fluent and coherent text and perform various
tasks with high accuracy. LLMs are trained on huge amounts of text data,
which gives them the ability to generate realistic responses and handle diffi-
cult and complex tasks. LLMs can be applied to many NLP tasks, such as text
summarization, machine translation, natural language generation, question
answering, and more.

© 2024. Published by AHFE Open Access. All rights reserved. 144

https://doi.org/10.54941/ahfe1004478


Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs 145

A prompt serves as a textual input to the model, functioning as the initial
cue or framework for its response. Furthermore, the prompt can be used
to establish the context before presenting the task. This enables LLMs to
generate more coherent and contextually relevant responses, making them
suitable for interactive and conversational applications (Kaddour et al., 2023)
without any fine-tuning (re-training the model for a particular task/dataset).
This leads us to the Retriever Augmented Generation.

Retrieval Augmented Generation (RAG)

RAG can be used to augment the prompt with real-time information, such as
information from the databases, leading to accurate and relevant content. In
addition, the retrieval indices can be kept up-to-date rather than continuously
fine-tuning an LLM. The context length of an LLM determines the extent of
text that the model can process at once. Typically, this limit is relatively short
ranging from 2048 - 4096 tokens. Therefore, the documents are chunked
(split into shorter paragraphs) and given as the context in the prompt to the
model.

Autonomous Agents

In addition to retrieval capabilities, LLMs can be integrated with tools such
as calculators and internet search engines, giving rise to Autonomous Agents.
These agents, capable of following natural language instructions, complete
tasks within visually perceived environments. LLMs play a key role in the
development of autonomous agents that can effectively and efficiently meet
user needs. Some examples of such agents include HuggingGPT (Shen et al.,
2023), Auto-GPT (Yang, Yue, and He, 2023), Baby-AGI (Nakajima, 2023),
and GPT-Engineer (Osika, 2023).

These agents are smarter and capable of solving complicated problems
that require multiple steps and sources of information. These agents are
adept at tasks such as code generation, data retrieval, text summarization,
question answering, crafting fluent responses, managing emails, schedul-
ing appointments, making online purchases, and adapting based on user
feedback.

Problem-Solving Paradigms for Autonomous Agents

Here, we discuss a few of the paradigms for constructing an autonomous
agent. These are:

• Chain of thought: It involves instructing the model to break down chal-
lenging tasks into smaller and more manageable steps, providing insights
into the model’s thought process (Zhang et al., 2023).

• Tree of Thoughts: An extension of CoT, Tree of Thoughts takes the idea
further by exploring multiple possible reasoning paths at each step. It
decomposes problems into multiple thought steps, generating multiple
thoughts at each step, and creating a tree-like structure (Yao et al., 2023).

• Self-Refine: An approach that improves LLM outputs through iterative
feedback and refinement by generating an initial output and refining itself
based on feedback (Madaan et al., 2023).



146 Barkur et al.

• ReAct: Reasoning and Acting (ReAct) integrates reasoning and action
within LLM by expanding the action space to include a combination
of task-specific discrete actions and language-based actions. The for-
mer allows LLM to interact with the environment, such as using the
Wikipedia search API, use tools like calculator and Python, whereas the
latter prompts LLM to generate reasoning traces in natural language (Yao
et al., 2022).

Use-Case: Powering an Autonomous Agent Based Chatbot Using the
ReAct Paradigm

The University of Applied Sciences at Ansbach used a Chatbot called DIAS
built with the Rasa, which uses a DIET classifier (Dual Intent and Entity
Transformer), which is trained to recognize the entities and the intents in
a sentence. A fixed answer is denoted for each intent by using rules. Addi-
tional training is done also for the flow of the conversation. For the DIAS
bot, automation was done to create the required files and rules for training
by programmatically extracting the data from a CSV file, which contained
the information required. Using Rasa actions, a knowledge graph was also
connected to the bot, which contained the information about the persons at
the university, and the study programs, which was obtained by scraping the
website of the university.

As LLMs like LLaMA became popular, along with frameworks like
LangChain (LangChain, 2023), it was then decided to migrate the bot to
a generative language model, with the ability to retrieve the information
directly from various files. This would also help reduce the perception that
the chatbots are “robotic” and reduce the efforts to maintain the bot. For
the autonomous agent based bot (referred to as DIASv2), the existing data
sources of DIASv1 were used, by referring to each data source as a tool in
the ReAct prompt.

The text information made available to the bot consisted of the FAQs,
the Study Programs, information about the persons working at the uni-
versity, Mensa Menu (Canteen Menu), and the opening times of different
organizations within the university.

For the retrieval, the embeddings were created by the text-ada-embedding-
002 model from OpenAI. Initial data creation was done by constructing an
agent using GPT-4 in the background. Discord was used as a front-end, for
testing and data collection. Later, the tools were themselves bundled with
LLMs, therefore creating an agents-calling-agents network, which helped
in shortening the overall context length, before passing the information to
the main agent. The context to train the main agent needs to be less than
2048 tokens, as the target LLM was a LLaMA-13B based model, which had
shorter context as opposed to GPT-4. The LangChain framework was used
to create the agents with ReAct paradigm, as it offers customization and easy
integration with different vector databases.

Once the data collection was finished, it was then augmented by chang-
ing the names of the tools, leading to 900 examples to train the model.
Guanaco-13Bwas the target model, trained usingQLoRawith 4-bit precision



Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs 147

(Dettmers et al., 2023). A single H100 GPU was used and training was done
for 4 epochs. The adapter generated was then merged with the base model to
create the DIAS-13B model.

As the agent has access to the tools, it needs to select the correct tool
and then arrive at the correct answer. For some questions, the answer is
arrived at by taking the output frommultiple tools and reaching a conclusion.
Therefore, the decision-making process of the agent also decides the overall
execution time.

Two factors are important in deciding whether a given LLM can be used
as a basis for the agent:

• Ability to follow the prompts correctly
• Target language and target domain

For example, some language models are not trained equally in other
languages compared to English and require additional fine-tuning for
the target language or a specialized domain such as law or medicine.
Therefore, evaluations are necessary to identify and address these
weaknesses.

EVALUATION

As discussed in the previous section, evaluations help in selecting the base
LLM that powers an agent. The evaluations allow us to compare the dif-
ferent models for a given domain and tasks, detect biases, and also look at
how models follow instructions. In the case of agents, evaluations make sure
that the agents are explainable and check for safety and reliability before
deployment.

Current Frameworks for Evaluating LLMs

• MMLU: A set of 57 tasks that span elementarymath, US history, computer
science, law, and more. To perform well, models must possess extensive
world knowledge and problem-solving ability (Hendrycks et al., 2020).

• LM-evaluation-harness: A unified framework to test models via zero/few-
shot settings on 200 tasks. Incorporates a large number of evaluations
including BigBench, MMLU, etc. (EleutherAI, 2023).

• HELM: Instead of specific tasks and metrics, HELM offers a compre-
hensive assessment of LLMs by evaluating them across domains. Metrics
include accuracy, calibration, robustness, fairness, bias, toxicity, etc. Tasks
include Q&A, information retrieval, summarization, text classification,
etc. (Liang et al., 2022).

• AlpacaEval: An automated evaluation framework that measures how
often a strong LLM (e.g., GPT-4) prefers the output of one model over
a reference model. Metrics include win rate, bias, latency, price, vari-
ance, etc. Validated to have a high agreement with 20k human annotations
(Tatsu-Lab, 2023).

Current Frameworks for Evaluating Agents

• ToolLLM: Enabling Large Language Models with 16,000+ Real-world
APIs: ToolBench, a dataset of 16,464 real-world RESTful APIs with



148 Barkur et al.

human instructions, DFSDT, a novel depth-first search-based decision tree
algorithm for efficient problem-solving, and ToolEval, an automatic eval-
uator for assessing LLMs’ tool usage. A LLaMA model fine-tuned using
ToolBench, outperforms other benchmarks, showcasing performance akin
to ChatGPT and surpassing them in tool usage (Qin et al., 2023).

• AgentBench: AgentBench addresses the lack of systematic LLM eval-
uations in interactive settings with eight evolving environments. These
environments test LLM-as-Agent’s reasoning and decision-making across
text adventure games, web navigation, and lateral thinking puzzles.
AgentBench assesses understanding, planning, execution, and evaluation.
The study evaluates 25 LLMs, including GPT-3.5, GPT-4, and open-
source models like LLaMA. Results show that top commercial LLMs
excel in complex environments, outperforming open-source competitors.
The authors also analyze strengths, weaknesses, and common challenges
across LLMs (Liu et al., 2023).

Challenges in Evaluating LLMs

According to a recent blog by HuggingFace, the comparison of the imple-
mentation of MMLU with HELM and LM-Evaluation-Harness led to the
conclusion that the same examples have different prompts across different
frameworks and minor differences in the tokenization and punctuation affect
a model’s performance (Fourrier et al., 2023).

Figure 1: Comparing the prompts from different frameworks (Fourrier et al., 2023).

The prompt used in different benchmarks may have a different structure
for the same dataset. As we can see in Figure 1, the prompt is the same in all
three benchmarks but has minor differences. LM-evaluation-harness does not
include any topic line or instruction. Also, the same benchmark adds a small
keyword ‘Choices’ compared to the other two benchmarks, in HELM and



Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs 149

LM-evaluation-harness add a ‘Question:’ prefix. In the case of the original
Implementation by MMLU, there is no newline separating the instruction
and question compared to HELM.

Method of Evaluation in Each Benchmark for the Same Prompt:

MMLU:Compares predicted probabilities on the answers only (A, B, C, D)
HELM: Uses the next token probabilities from the model and picks the
token with the highest probability, even if it’s not one of the options.
LM-evaluation-harness: Computes the probability of the full answer
sequence (i.e., a letter followed by the answer text) for each answer,
picking the answer with the highest probability.

Figure 2: Shows the result of 3 different models which are evaluated with the same
dataset using different benchmarks that we discussed. Also, the evaluation methods
for each benchmark are different as discussed. Reason for different numbers as results
which are not comparable with the same prompt.

Therefore, the same dataset could have different scores based on the
evaluation framework used, leading to different absolute scores and dif-
ferent model rankings on different evaluation frameworks (Fourrier et al.,
2023). This poses a challenge for the Open LLM Leaderboard and calls for
standardization and transparency in the evaluation process.

METHODOLOGY AND RESULTS

Methodology

To evaluate the bot (agent), we follow the following steps:

• Data preparation: Prepare the fictional data for evaluating the bot. The
prepared data should be embedded and made available to the retriever
used by the bot.

• Questions and Gold Answers preparation.
• Definition of the metrics.

For the test data preparation, we created 100 fictional persons and 20 fic-
tional study programs, such that they mimic the real data. This was done
to ensure the train data was not present in the test data. We created 10
single-step questions and 10 multi-step questions to test the agent on these
questions. By single-step, it means that only one step is taken to answer the
question (usually by the data from the retriever). Likewise, for the multi-
step, it means that the retriever model has to be accessed twice, combine the



150 Barkur et al.

data, and then conclude. For each question, we define the gold answer i.e.
the model answer.

We then defined the metrics for the evaluation: Effort and Success rate.

• Effort: We count the number of steps themodel takes to complete the task
and then divide it by the steps taken by the gold answer. 1 is the ideal
score obtained here. Lower effort indicates skipping of steps, which can
be due to hallucination.

• Success rate: We check whether the end answer of the model matches
the gold answer. If only half of the answer is present (if two answers are
required, then the success rate is 0.5).

For testing, we based different models as the backbone of the agent. Most
models are hosted by TogetherAI (Together AI, 2023), whereas the DIASv2
model is hosted on our servers.

In addition, we test the performance of such an agent in the English lan-
guage, by giving it twenty such questions with access to the following tools:
Calculator, Wikipedia, Arxiv, PythonRepl, Random Number Generator, and
DuckDuckSearch. The use of these tools is required to obtain the answers to
the questions.

We build this approach programmatically by defining a task file in JSON.
The file consists of the following fields: Models to be evaluated, questions,
gold steps, and gold answers. The generation of gold steps and gold answers
is done with the help of GPT-4. Once this file is defined, it is then used by
a Python script to evaluate these models and come up with the results. The
result is again stored in a JSON file.

RESULTS

This section discusses the comparison of the various models of the LLaMA
family, ranging from 7 Billion parameters to 70 Billion parameters. Initially,
the evaluation is done for the DIASv2 agent, which is fine-tuned, and com-
pared with the other models from the LLaMA family. Later, the evaluation is
done keeping generic English language questions in mind.

As discussed earlier, we define two metrics, the success rate and effort.
The Success rate metric can have values (0, 0.5, and 1). 1 indicates a correct
answer and 0 indicates an incorrect response, 0.5 indicates that one part of
the answer is correct. In parallel, the Effort metric quantifies the steps taken
by the model divided by the gold-standard steps, with 0 signifying either zero
steps taken or parsing errors. A lower effort score often suggests hallucina-
tion, indicating that the model skipped essential intermediate steps to arrive
at an answer. Combining these metrics provides a comprehensive evaluation
of the model’s correctness and the extent to which it accurately follows the
desired prompt.

When it became clear that the agents could be evaluated in this manner, we
also tested the agents with tools for questions in English. The results are men-
tioned for the Single-step problems in Table 3 and the multi-step problems in
Table 4.



Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs 151

Table 1. Overall performance for single-step problems for the university agent in the
German language. Values indicated are in the form of success rate and effort
(success rate, effort). The orange highlight indicates successful completion.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

LLaMA-2-7b-chat 0, 0 0, 1 0, 0 0, 1 0, 0 0, 0 0, 0 0, 1 0, 0 0, 0
LLaMA-2-13b-chat 0, 0 0, 0 0, 0 0, 0 0, 0 0, 2 0, 5 0, 0 0, 1 0, 1
LLaMA-2-70b-chat 1, 1 0, 4 0, 1 1, 1 1, 2 0, 1 0, 1 0, 0 0, 0 0, 0
WizardLM-70B-V1.0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Vicuna-13b-V1.5 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
DIAS-13B 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 2 1, 1 1, 1

Table 2. Overall performance for multi-step problems for the university agent in the
German language. Values indicated are in the form of success rate and effort
(success rate, effort).

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

LLaMA-2 7b-chat 0, 0.5 0, 0.5 0, 0 0, 0.5 0, 0.5 0, 0 0, 0 0, 0.5 0, 1 0, 0
LLaMA-2 13b-chat 0, 0 0, 0.5 0, 0.5 0, 0 0, 0.5 0, 0.5 0, 0 0, 0 0, 0 0, 0
LLaMA-2 70b-chat 0, 0 0, 0 0, 0 0, 0 0, 0.5 0.5, 1 0, 1 0, 1 0, 0 0, 0
WizardLM- 70B-V1.0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
Vicuna-13b -V1.5 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
DIAS-13B 0.5, 0.5 1, 1 1, 2 0.5, 0.5 1, 1 1, 1 0, 0.5 0, 1 0.5, 0.5 0.5, 0.5

Table 3. Overall performance for single-step problems for generic questions in the
English language. Values indicated are in the form of success rate and effort
(success rate, effort).

GQ11 GQ12 GQ13 GQ14 GQ15 GQ16 GQ17 GQ18 GQ19 GQ20

LLaMA-2 7b-chat 0, 3 0, 2 0, 5 1,1 1, 1 0, 5 0, 0 1, 1 1, 1 1, 2
LLaMA-2 13b-chat 0, 1 0, 1 0, 0 1, 1 1,1 0, 2 0, 0 0, 0 1, 0 1, 2
LLaMA-2 70b-chat 0, 0 0, 1 1, 1 1, 1 0, 5 1, 1 1, 1 0, 0 1, 0 1, 1
Wizard LM-70B-V1.0 0, 3 0, 2 1, 1 1, 1 1, 1 1, 1 1, 1 1, 2 1, 1 1, 1

Table 4. Overall performance for multi-steps problems for generic questions in the
English language. Values indicated are in the format of success rate and effort
(success rate, effort).

GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8 GQ9 GQ10

LLaMA-2 7b-chat 0, 0.5 0, 1 1, 0.5 0, 1 0, 2 0, 0.5 1, 0.05 1, 1 0, 1.5 0, 1
LLaMA-2 13b-chat 0, 0.5 0, 0.5 0, 0 0, 0 0, 0 1, 1.5 1, 1 1, 1.5 0, 0 1, 1
LLaMA-2 70b-chat 0, 0.5 0, 0 0, 0 0, 0 0, 0 1, 1.5 1, 1 0, 0 0, 2 1, 1
Wizard LM-70B-V1.0 1, 2 0, 1 0, 1 0, 2.5 0, 2 0, 1 1, 1 1, 0.5 0, 1.5 1, 1

From Tables 1 and 2, fine-tuning a smaller model makes it possible to
use it for the ReAct paradigm and deploy it on-site locally. Fine-tuning also
helps it strengthen its abilities for the languages it was trained unequally on,
indicated by the differences in the success rates of generic questions in English,
compared to the prompts in German. These metrics also highlight the issue of
the language model being undertrained for certain languages. If the datasets
could be translated and the custom datasets added, it could lead to better
training of the language models.



152 Barkur et al.

Therefore, we suggest our framework called Magenta with these goals
in mind, by extending the program created for automatic evaluation of the
language models.

CONCLUSION AND FUTURE WORK

Evaluation of agents and LLMs is an important step to bring these agents
into the production world. This helps to make sure, that the results are
reproducible and scientific. LLMs form the backbone of the agents, therefore
making it necessary to choose those models that can follow the prompts and
have the target domain knowledge where the agent is being deployed. With a
use-case of an agent for the university, we show that the fine-tuning allows the
model to follow the prompts and deploy a smaller fine-tuned model locally.
We also highlight that the language models are under-trained for other lan-
guages. Continuing with evaluation, we built a tool from scratch, to evaluate
the agents and then proposed our framework Magenta to integrate all other
datasets for evaluation, add custom datasets, and build a unified framework
for evaluating LLMs and agents in a single framework. As a work in progress,
we are integrating other publicly available datasets and introducing auto-
matic translation for the datasets, by defining them in the task file. As a future
work, we propose Magenta++, a framework that defines these tasks pro-
grammatically and then constrains the generated output, to check the logical
deductions made by the LLM.

REFERENCES
Dettmers, T. et al. (2023) ‘QLoRA: Efficient Finetuning of Quantized LLMs’.

Available at: https://arxiv.org/abs/2305.14314
EleutherAI (2023) ‘lm-evaluation-harness’. Available at: https://github.com/Eleuthe

rAI/lm-evaluation-harness
Fourrier, C., Habib, N., Launay, J., & Wolf, T. (2023) ‘What’s going on with the

Open LLM Leaderboard?’. Available at: https://huggingface.co/blog/evaluating-
mmlu-leaderboard

Hendrycks, D. et al. (2020) ‘MeasuringMassiveMultitask Language Understanding’.
Available at: http://arxiv.org/abs/2009.03300

Kaddour, J. et al. (2023) Challenges and Applications of Large Language Models.
LangChain, (2023). Available: https://www.langchain.com/
Liang, P. et al. (2022) ‘Holistic Evaluation of Language Models’. Available at:

http://arxiv.org/abs/2211.09110.
Liu, X. et al. (2023) ‘AgentBench: Evaluating LLMs as Agents’. Available at:

https://arxiv.org/abs/2308.03688
Osika, A. (2023) ‘gpt-engineer’. Available at: https://github.com/AntonOsika/gpt-

engineer
Nakajima, Y. (2023) ‘babyagi’. Available at: https://github.com/yoheinakajima/babyagi.
Qin, Y. et al (2023) ‘ToolLLM: Facilitating Large Language Models to Master

16000+ Real-world APIs. Available at: https://arxiv.org/abs/2307.16789
Shen, Y. et al. (2023) ‘HuggingGPT: Solving AI Tasks with ChatGPT and its Friends

in Hugging Face’. Available at: http://arxiv.org/abs/2303.17580
Tatsu-Lab (2023) ‘alpaca_eval’. Available at: https://github.com/tatsu-

lab/alpaca_eval

https://arxiv.org/abs/2305.14314
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/blog/evaluating-mmlu-leaderboard
https://huggingface.co/blog/evaluating-mmlu-leaderboard
http://arxiv.org/abs/2009.03300
https://www.langchain.com/
http://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2308.03688
https://github.com/AntonOsika/gpt-engineer
https://github.com/AntonOsika/gpt-engineer
https://github.com/yoheinakajima/babyagi
https://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2303.17580
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval


Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs 153

Together AI (2023) ‘Together AI’. Available at: https://together.ai/
Yang, H., Yue, S. and He, Y. (2023) ‘Auto-GPT for Online Decision Making: Bench-

marks and Additional Opinions’. Available at: http://arxiv.org/abs/2306.02224
Yao, S. et al. (2022) ‘ReAct: Synergizing Reasoning and Acting in Language Models’.

Available at: http://arxiv.org/abs/2210.03629
Yao, S. et al. (2023) ‘Tree of Thoughts: Deliberate Problem Solving with Large

Language Models’. Available at: http://arxiv.org/abs/2305.10601
Zhang, Z. et al. (2023) ‘Multimodal Chain-of-Thought Reasoning in Language

Models’. Available at: http://arxiv.org/abs/2302.00923
Madaan, A., et al. (2023) ‘Self-refine: Iterative refinement with self-feedback’.

Available at: https://arxiv.org/abs/2303.17651

https://together.ai/
http://arxiv.org/abs/2306.02224
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2303.17651

	Magenta: Metrics and Evaluation Framework for Generative Agents Based on LLMs
	INTRODUCTION
	Retrieval Augmented Generation (RAG)
	Autonomous Agents
	Problem-Solving Paradigms for Autonomous Agents
	Use-Case: Powering an Autonomous Agent Based Chatbot Using the ReAct Paradigm

	EVALUATION
	Current Frameworks for Evaluating LLMs
	Current Frameworks for Evaluating Agents
	Challenges in Evaluating LLMs

	METHODOLOGY AND RESULTS
	Methodology

	RESULTS
	CONCLUSION AND FUTURE WORK


