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ABSTRACT

Neural decoding is often limited to tasks with known stimuli and limited response
options. Real world tasks, however, are often completely stimulus free with uncon-
strained user response possibilities. Real time decoding of internal decision making
would allow for more complex and interactive Human Machine Teaming in a way that
is not currently possible. To address this problem, we present here a novel method of
decoding moments of recognition and their associated internal value judgments in the
context of highly complex software reverse engineering tasks. This is done through a
combination of P300 detection (a neural marker of recognition) and the Engagement
Index (a ratio of neural band powers) to determine whether an item has been identified
as relevant to the task (to be further explored) or irrelevant to the task (to be quickly
ignored). Artificial neural networks were trained to identify P300s in each subject dur-
ing the reverse engineering tasks. Dimensionality reduction of neural data during the
tasks showed the existence of separately clustering subgroups of P300s with differ-
ences in Engagement Index. Subgroups of P300s differentiated by Engagement were
further verified as distinct groupings with pupil dilation and user behavior metrics.
This decoded information could be used to aid in the reverse engineering process via
cognitive offloading of the user’s own decision making on to the visual interface in a
completely automated and personalized fashion. This represents a significant advance
in domain of real-time neural decoding, and opens up many further possibilities for
usage in a broad range of intelligent human systems integration applications.
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INTRODUCTION

Real-world, complex, and unstructured tasks are rarely tackled in brain com-
puter interface (BCI) research. Though challenging, the development of BCIs
that can identify cognitive states in a complex context is an area of research
that should not be left unexplored. This project aims at understanding the
cognitive processes of reverse engineers (REs) as they perform vulnerability
analysis on a binary file.
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A key strategy of expert RE’s is to very quickly exclude large portions of
the code as irrelevant and focus only on a much smaller subset of poten-
tially vulnerable code (Mantovani, 2022). In this paper, we propose a novel
combination of neural signals that can be used to identify and differentiate
moments of recognizing relevance or irrelevance during a complex task such
as reverse engineering. Identifying the moment of recognition is first done
with an event related potential called the P300. This is a positive deflection
in the EEG signal which can be detected approximately 300 ms after a sur-
prising, rare, or particularly attended to event (Linden, 2005). In addition
to the classic P300, a variety of “No-Go” P300s have been noted in the lit-
erature - these are P300s that occur during common or non-target stimuli
(Polich, 2007). Importantly, identification of No-Go P300s is primarily done
by having known differential stimuli or post-hoc analysis of differences in
latency, amplitude, or lateralization of the signal. However, these methods
are not sufficient for complex, stimulus-free, real time decoding: additional
neural information is needed to make the distinction.

EEG frequency bands are typically defined as delta (1-4 Hz), theta
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-100 Hz), each of
which has been associated with a range of cognitive states. The Engagement
Index (EI), which combines beta, theta, and alpha band powers, has been
used to quantify mental attention (MacLean, 2012) and alertness (Freeman,
1999). We here show that P300s in this task naturally cluster into separate
groups, differentiable via the Engagement Index. Distinction between these
two different types of neural events is then validated with user activity and
pupil data. In combination, these two key metrics can decode Go vs. No
Go P300 events in real time and give insight into an RE’s internal decision
making in a completely automated fashion.

These insights could be used to augment a task interface, offloading reten-
tion of knowledge from human to machine. These two different types of
moments of recognition may have many similarities, but require opposite
interventions - bring attention to an area if it is relevant, or completely dis-
card if it is not. Importantly, being able to modify the task interface to reflect
these internal judgments has the potential to provide significant cognitive
offloading to the user in providing a visual display of their intuitions, allow-
ing them to further narrow down relevant subsections of code and work in a
more efficient manner. Our method represents a major advance in real-time
neural decoding and intelligent human systems integration as field.

METHODS

Our subjects consisted of nine reverse engineers (RE’s) from HRL Labora-
tories and the Naval Information Warfare Center. These RE’s conduct their
tasks in a platform called Ghidra, a reverse engineering tool developed by
the National Security Agency (2019). In our experiment, participants first
completed a number of unrelated pre-tasks as neurophysiological baselines.
They were then given a series of 6 reverse engineering problems from the
DARPA CHESS Challenge set (Kerley, 2022) and asked to identify the vul-
nerability in a given section of code (if one exists). During this process we
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collected recordings of their neural activity via EEG, eye tracking data, and
actions in the tool interface (clicks, scrolls, tool changes, etc.). IRB approval
was attained for this experiment; participants were compensated according
to their normal hourly rates.

Pre-Tasks

Prior to the main experiment, participants completed an Auditory Oddball
task. Here, participants sat with their eyes open while intermittent tones were
played. Participants were instructed to press a key when they hear a high tone
(Target), and ignore low tones (Distractor).These 2 stimuli classically evoke
Go and No Go P300 waveforms. Data was also collected while participants
sat quietly with eyes open and no other stimuli occurring for several minutes.

User Behavior Collection

The behaviors of reverse engineers were recorded as they interacted with
the Ghidra interface with Swing event listeners and Java’s Abstract Win-
dow Toolkit implemented on Ghidra components. Behavioral data collected
included clicks, mouse movements, scrolls, and keyboard inputs.

Eye Tracking

The Smart Eye AI-X eye tracking device was used to track eye fixations and
movement on the computer screen interface. This device also measured pupil
diameter of both the left and right eyes. As the experiments were performed
in well lit rooms with constant luminance, external factors are expected to
have minimal effect on pupil dilation. This method provided a 60 Hz sample
rate.

EEG

Recordings were made with a 32 channel Brain Vision ActiCHamp (sub-
jects 1-3) or Neuroelectrics Enobio 32 (subjects 4-9) EEG cap with electrodes
placed on the scalp according to the standard 10–20 scheme, at a sampling
rate of 500 Hz. Signals were notch filtered at 60 Hz to remove power line
artifacts and bandpass filtered between 1–128 Hz. Signals were then divided
into 1 second epochs.

P300 Identification

Neural data from the Auditory Oddball test and eyes-open baseline period
were used to train a machine learning model to identify P300 occurrences
in neural data. Both Go and No Go P300s were labelled as a 1, while
baseline data was labelled as a 0. Feedforward networks, described in
Figure 1, were trained via 5 fold cross validation. Each network was trained
on 1 second windows of data from the FZ and CZ electrodes, flattened
into a 1 dimensional vector, as the central and frontal midline regions are
traditionally associated with the P300 signal (Uvais, 2018).
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Figure 1: P300 Neural Network Architecture, displaying 3 feedforward (FF) blocks
each containing a dense layer, batch normalization, and 20% dropout. The network
is trained using 5-fold cross validation with binary cross entropy (BCE) loss and the
Adam optimizer. Input is raw neural signal from midline electrodes FZ and CZ; Output
node predicts if a one second epoch of EEG data contains a P300 or not.

Band Powers

The decomposition of EEG signals into frequency bands is here achieved
usingWelch’s method (Welch, 1967), and averaged across all scalp electrodes.
The frequency bands were computed as delta (1-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), beta (12-30 Hz), and gamma (30-100 Hz). Engagement Index (EI)
is calculated as beta band power divided by the sum of the theta and alpha
band powers for each one second epoch during the experiment.

Dimensionality Reduction

For each one second time point in the reverse engineers tasks, we created
a feature vector that contained the raw P300 prediction as well as the
average power in the 5 different frequency bands in each of the 32 EEG
channels. We then employed UMAP (Uniform Manifold Approximation and
Projection) (McInnes, 2019) to project these 161 dimensional vectors onto a
2 dimensional space

Statistical Analysis

Statistical analysis was performed to determine if there were significant dif-
ferences between the High and Low Engagement P300 Points. For pupil
diameter and standard deviation, a mixed effects model with subject ID as
the grouping variable was employed to account for within-subject variation
(Bates, 2014). Otherwise, T-tests were used. All tests required p < 0.05 to be
considered statistically significant.

RESULTS

P300

All 9 subjects showed strong responses to both the Target high tones and
Distractor low tones in the Auditory Oddball task, reflecting both “Go”
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and “No Go” type P300s. Representative average neural signatures from the
midline electrodes for all stimuli can be seen in Figure 2.

Figure 2: Sample waveforms for 3 subjects from the auditory oddball task (including
both Go and No-Go P300s). Top: all trials (y axis) by time (x axis), where time 0 is the
expected P300 peak time 300 ms after the stimulus. Bottom: average waveform across
all trials.

Across all 9 subjects, trained artificial neural networks showed extremely
consistent results with an average validation accuracy of 96.36% (±1.75)
across all subjects (Table 1). These networks were trained individually per
subject, then applied to each subject’s respective neural data during the
reverse engineering tasks, broken into 1 second time windows. The networks
predicted an average of 13.72% of all time windows to contain a P300, with
an average of 6.7 unique events per minute. Continuously identified P300
predictions lasted approximately 1.2 seconds, as would be expected for a
short physiological signal.

Table 1. Top - oddball validation accuracy using five-fold cross validation. On average,
networks achieve 96.36% accuracy±1.75% (standard deviation), showing con-
sistency across both training folds and subjects. Bottom – reverse engineering
task results. On average, subjects correctly answered 2.33 out of 6 tasks (39%).
An average of 6.7 P300 events were detected per minute during the tasks, with
a sustained P300 detection duration of 1.21 seconds. Across all time in the
tasks, 13% of time points were predicted to contain a P300; of all detected
P300 time points, 15.91% showed high engagement.

P300 Neural Network Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Average 95.84 96.82 96.87 96.06 96.23
Standard Deviation 1.43 1.48 1.14 2.67 1.80

Reverse Engineering Task Results

# Correct Events /Min Duration (s) % Time % High P300

Average 2.33 6.70 1.21 13.72 15.91
Standard Deviation 0.87 2.05 0.09 5.33 8.46
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Engagement Index

Engagement Index was calculated as the below ratio of neural band powers
for each electrode per second per subject.

Engagement =
beta

alpha + theta
(1)

A threshold for High Engagement was set as 1 standard deviation above
the mean Engagement from the first 10 minutes of the reverse engineering
tasks; everything below this threshold was classified as Low Engagement.
Using this threshold, less than 16% of P300s identified during the reverse
engineering tasks show High Engagement (Table 1). This aligns with our
expectations that the majority of the P300s are due to rejecting lines of
code rather than finding something interesting (due to sparsity of true
vulnerabilities).

Dimensionality Reduction

To find clusters of cognitively similar time points across the reverse engineer-
ing tasks, we created UMAP projections of the P300 prediction and average
band powers (Alpha, Beta, Gamma, Delta, & Theta) across all electrodes
at every time point for each subject. In all 9 subjects, we consistently found
subgroups of P300 points that separate both from the control data and each
other (Figure 3). This implies that there are 2 distinct phenomena that are
classified as a P300 by the network - presumably, putative Go and No Go
P300s. These are hypothesized to represent either moments when the RE
identifies a piece of code that is relevant to a vulnerability, or moments when
they identify information that allows them to exclude the code and quickly
move on.

To test the hypothesis that the Engagement Index may explain differ-
ences between P300 subgroups within the UMAP project, we show the same
projections with points colored by their calculated Engagement Index and
their manually identified subgroup labels. Indeed, we see that there are visu-
ally obvious differences in Engagement between P300 subgroups. Statistical
testing of the Engagement between the two P300 subgroups confirms that
statistically significant differences exist across all subjects in an average of
22.89 (± 8.84) out of 36 total electrodes.

Validation With Pupil Metrics

We then asked if the different groups of P300s could be further validated out-
side of neural data. Specifically, pupil dilation has been shown to be closely
tied to Noradrenaline activity in the Locus Coeruleus region of the brain
and can be taken as a proxy for activation of the sympathetic nervous sys-
tem (Eckstein, 2017). Due to this, we looked at changes in pupil diameter
as a secondary indication of differing underlying neural states between the
two identified types of P300s (Figure 4). The normalized (per participant)
mean and standard deviation of the averaged pupil diameter per second was
tested for significant differences between High Engagement P300 points and
Low Engagement P300 points across all subjects using a multilevel model;
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bothwere determined to be statistically significantly different between groups
(Mean: p = 0.003, SD: p < 0.000).

Figure 3: UMAP projection of the neural data of all time points for 3 subjects, colored
by: P300 prediction, engagement index (average over all channels), and subgroup
labels. The engagement Index is statistically significantly different between P300
Groups (blue and red dots) in an average of 22.89 channels (±8.84) out of 36 total
channels per subject.

Figure 4: Normalized pupil diameter means (left) and standard deviations (right),
averaged per participant per P300 group (low vs high engagement). Top plots show
regression lines per subject from the mixed effects model to account for individual
variation. High engagement P300 points show a higher pupil diameter mean, and
lower standard deviation (Mean: p = 0.003, SD: p < 0.000, mixed effects model).
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While differences existed between subjects, themajority of subjects showed
Low Engagement P300 points with a lower mean and higher standard devi-
ation; this could indicate they are more relaxed and having normal pupil
fluctuations. High Engagement P300 points then showed higher mean and
lower standard deviation, indicating their pupils are steadily widened as they
potentially have a moment of insight.

Validation With User Actions

We further validated our use of P300s and Engagement by analyzing the
behavior of reverse engineers. The primary behavior of interest is a click fol-
lowed by scrolling; this sequence was identified as highly likely to occur when
reverse engineers find a potential vulnerability in code and search for further
information to confirm or reject their hypothesis.

To test this hypothesis, we calculated the percentage of all High (and Low)
Engagement P300s that occurred within 2 seconds before this sequence. We
found that a significantly higher percentage of High Engagement P300s occur
prior to a click-scroll, as compared to the percentage of Low Engagement
P300s (p = 0.0077, T-test). On average, subjects had 2.84% of all of their
High Engagement P300s occur before this sequence, but only 0.22% of Low
Engagement P300s (Figure 5).

Figure 5: Percentage of all high (and low) engagement P300s that occur in the 2
seconds prior to a click-scroll sequence for each subject during reverse engineering
tasks. On average, 2.84% (± 2.29) of all high engagement P300s occurred before
this sequence; the same is true for 0.22% (±0.27) of all low engagement P300s. This
difference is statistically significantly different (p = 0.0077, T-test).

DISCUSSION

We here propose a method of neural decoding based on two well established
metrics - the P300 and the Engagement Index - in novel combination to dif-
ferentiate Go and No-Go type P300s in real time.We validated our approach
with neural data dimensionality reduction, pupil dilation, and behavioral
data. This disambiguation of neural signals can be used to aid human users
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in complex, real world tasks; specifically, those that require human exper-
tise in parsing large amounts of data to find sparse items of importance.
This advance in Human-Machine Teaming allows for significant cognitive
offloading, as the task interface can be automatically updated to reflect
and track the user’s own internal decision making. This plays directly to
the strengths of both parties - human task expertise and machine memory
capacity.

For use in software reverse engineering, code lines of interest could be auto-
matically highlighted in yellow while irrelevant lines could be automatically
greyed out. Beyond reverse engineering, consider a lawyer who needs to parse
large documents of legal text in search of scarce laws and precedents relevant
to his client’s case. Medical applications could further span from aiding doc-
tors in analyzing patient test results and medical scans, to augmenting classic
Brain Computer Interface approaches for communication.

The primary limitation of this study is the lack of definitive ground truth
during the reverse engineering tasks. Explicitly asking the RE to press a dif-
ferent button each time one of these events occurs is likely to be unreliable,
distracting, and deeply entangle the signals of interest with artifacts from the
movement itself and the additional cognitive processing of deciding to push
a button. Measures of how helpful and intuitive our proposed intervention
is can come only from user feedback in a real-time field test. Fine-tuning this
tool for professional use will require extensive instrumentation and engineer-
ing of the task interface, and is beyond the scope of this paper. Here, we
emphasize the scientific advances before the engineering of implementation.

Moving forward, we hope to explore more joint measures of neural activ-
ity to decode cognitive states. For example, eye gaze entropy has also been
shown to be a valid metric for fatigue (Shiferaw, 2018) and could be used in
combination with alpha band power (a robust metric for alertness (Knyazev,
2016)) as a metric of motivation and focus. Taken together, these could give
a strong indication of when the user may require a break in order to con-
tinue performing efficiently. We are further exploring joint metrics for broad
cognitive states such as stress, cognitive load, insight, and exploration vs.
exploitation.

This metric is a starting point from which we hope to gain further mean-
ingful insight into the cognitive states of human users during complex,
real-world tasks. The ability to identify different types of P300s in real
time without known external stimuli further presents the opportunity for
an incredibly wide array of applications, and we hope can have far reach-
ing impacts in the future of neural decoding and intelligent human machine
teaming.
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