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ABSTRACT

Digital twins are a new paradigm that can revolutionize the way we work and manage
complex systems due to its varied capabilities including, remote monitoring, controls,
and prediction. Models are often used in engineering to represent the physical prop-
erties of the system concerned. However, the human is a fundamental part of nuclear
power plant (NPP) system function. Thus, a model is considered that will adequately
represent not only the physical properties but the function of the human as well. The
startup operation of a NPP is a representative process where the human plays a cru-
cial role in the success of the operation. This paper shows a preliminary analysis of a
representative NPP where the knowledge of the physical parameters and realistic oper-
ational functions have been leveraged for a potential digital twin. The work is based
on a set of parameters defined in literature including, the physical data, the observ-
able data, the physical inputs, the digital inputs, and others. The aim is to develop a
comprehensive probabilistic digital twin model of the desired system.
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INTRODUCTION

Digital twins (DT) are a new paradigm that can revolutionize the way we
work and manage complex systems due to its varied capabilities including
remote monitoring, controls, and prediction. In a succinct definition, some
authors (Schulse et al., 2018) describe DT as a representation of ‘real objects
or subjects with their data, functions, and communication capabilities in the
digital world’. The authors go on to say that DT ‘enable networking and
thus the automation of complex value-added chains’ all the while working
‘as nodes within the internet of things’. The major capabilities of a digital
twin include real time monitoring and control, greater efficiency and safety,
predictive maintenance and scheduling, scenario and risk assessment, and
better intra- and inter-system synergy and collaboration. Others are, more
efficient and informed decision support system, personalization of products
and services, and better documentation and communication (Rasheed et al.,

2020).
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DTs are applicable and have already been applied in several industries
albeit in different forms. Some of the industries where the technology is
becoming apparent include, health, meteorology, education, process and
manufacturing, transportation, energy production, business, and other indus-
tries (Rasheed et al., 2020) (Rathore et al., 2021). Although the nuclear
industry can be considered as part of the intersection of the process and
energy industries, the adoption of DT technologies is scant. This is not unex-
pected because historically, the nuclear industry has been slow to adopt
emerging technologies because of its uniquely combined high safety and secu-
rity nature. However, research into the adoption of DTs (as with many other
emerging technologies) in nuclear systems have gained traction in recent
years. Most of the current research in this area for the nuclear industry has
focused on the technical challenges of implementation (Yadav et al., 2021)
(Kochunas & Huan, 2021) (Prantikos et al., 2022), safeguards and secu-
rity implications (Yadav et al., 2023), applications for the next generation
of advanced reactors (Browning et al., 2022) (Wilsdon et al., 2023), or spe-
cific system applications like prediction of flow-induced vibration (Mohanty
& Vilim, 2021). However, the consideration of the human actions and
procedures in DT has largely been neglected.

The human plays a significant role in the operation of the current nuclear
fleet of reactors and is a fundamental part of nuclear power plant (NPP) sys-
tem function. While there is still debate as to the role of the human in future
technology applications, lessons can be learned in the current use of human
actions with procedures and their performance in the operations of NPP for
future developments of DTs. Unlike the standard full-power operation, the
power-increase operation requires significantly more decision-making and
therefore increases the potential for human errors. While previous studies
have investigated the use of artificial intelligence (AI) techniques for NPP
control, none of them have addressed the specific challenges of adapting the
current system for DT applications. Thus, this paper considers a DT model
that will adequately represent not only the physical properties but the func-
tion of the human as well in NPP startup operations. The rest of the paper
describes the startup operation of an NPP and the preliminary proposed mod-
els. Thereafter, a brief discussion of our model and planned future work is
provided.

PRINCIPLES OF A NPP STARTUP OPERATION

Physics-based models are typically used to simulate the physical assets of a
plant and their physical phenomena. In the case of a NPP, such phenomena
can include, heat transfer, neutronics, mass transfer, and many others. Cur-
rently there are multi-physics codes that can model multiple plant phenomena
simultaneously. A DT must achieve an integrated model of all relevant phe-
nomena. Thus, an overview of the physical processes occurring during a NPP
startup operation are given here.

The power start-up scenario of a nuclear power plant (NPP) involves
increasing the reactor power until the full-power condition is achieved.
Unlike the standard full-power operation, the power start-up scenario
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involves constant monitoring, several decision-making points, and more com-
plicated manipulations due to the automatic and safety functions of many
systems being disabled. Throughout the scenario evolution, several system
parameters are consistently changing. Thus, further increasing the potential
for system instability where the operation is incorrectly implemented.

The Pressurized Water Reactor System of an NPP

NPPs are conventionally used to generate baseload electricity, but several
types are in existence today mostly varying depending on the type of coolant,
moderator, or number of loops. The pressurized water reactor (PWR) uses
light water for cooling and moderation with a two-loop design. In the primary
loop, water is pumped via the reactor coolant pump (RCP) to the reactor
pressure vessel (RPV), through to the steam generator (SG), and back again
to the RCP. The pressurizer (which manages the pressure in the loop) is also
located along the primary loop. The secondary loop is where the water from
the condenser is pumped by the main feedwater pump (MFP) through to the
SG. From there, steam continues in the loop to the turbines and back to the
condenser as water.

Along with the primary systems, there are several controllers that work to
keep the system stable. Some of them are the control rod controller, the SG
level controller, the boric acid control valve, and the turbine load controller.
The schematic on Figure 1 shows a simple depiction of a so called ‘3-loop
PWR’ including some important controllers within the overall PWR system.
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Figure 1: A typical PWR system of an NPP.
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Analysis of the Startup Operations of an NPP

This study considers the startup operation of a typical Westinghouse 3-loop
PWR. In this reference plant, the operators follow general operating proce-
dures (GOPs) for controlling systems and components during the start-up
operation. The GOPs include 1) Reactor coolant system filling and vent-
ing, 2) Cold shutdown to hot shutdown, 3) Hot shutdown to hot standby,
4) Hot standby to 2% reactor power, 5) Power operation at greater than
2% power, and 6) Secondary system heat-up and start-up. The increase of
a NPP power from 2% to 100% is the part of the startup operation that
increase the temperature and power to the normal conditions for electricity
generation.

There are six major parameters that serve as milestones for operators in
the successful performance of the start-up operation including pressurizer
level, reactor coolant temperature, reactor coolant pressure, SG pressure, SG
level, and reactor power. The power-increase operation consists of two major
operational ranges: 1) maintaining the reactor power at 2% and 2) increasing
the reactor power from 2% to 100%.

In the first operational range, the positions of all control rods are adjusted
(withdrawn) to 100% (i.e., banks A, B, & C to step 228 and bank D
to step 220) while maintaining the reactor power at 2%. Withdrawing
the control rods causes the reactor power to increase. However, increas-
ing the boron concentration reduces the reactor power. Thus, the boron
concentration is simultaneously increased from 637ppm to 727ppm as the
control rods are withdrawn, thereby keeping the power stable at 2%. In
the second operational range the boron concentration is gradually reduced
from 727ppm to 457ppm, allowing a steady reactor power-increase up
till 100%.

The turbine load controller is used mainly in the second operational range
to keep the turbine revolutions per minute (RPM), turbine power accelera-
tion rate, and load setpoint as prescribed by the operating procedures. Some
of the setpoints are 1800RPM (at reactor power of 10%), acceleration of
2Mwe/min (at reactor power above 10%), load setpoint of 100Mwe (at reac-
tor power of 10-20%), load of 200Mwe (at reactor power of 20-30%). See
the load setpoints controls as depicted in Figure 2.

Feedwater (FW) pump 1 is operated at the first operational phase while
FW pumps 2 and 3 are operated in the second operational phase. Main
FW pumps 2 and 3 are started at reactor power of 40% and 80% respec-
tively. However, the condenser pumps #2 and #3 are operated at reactor
powers of 20% and 50% respectively. The synchronizer is activated when
the reactor power exceeds 15% and the turbine is at 1800RPM. The SG
feedwater valves and pressurizer relief valves are automatically controlled
to manage the steam generator and pressurizer levels. The average tempera-
ture is also maintained because it depends on the reactor power. Meanwhile,
various portions of the RCP, CVCS, makeup water system, and nuclear ser-
vice water systems or equipment must be operational to support the RCS fill
and vent.
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Figure 2: NPP startup operational phases.

PROPOSED MODEL OF HUMAN ACTIONS FOR NPP DIGITAL TWINS

Operator activities play a significant role in the successful ramp up of power
to 100%. Thus, it is necessary to understand and represent the human activ-
ities in DTs for an accurate depiction of the plant operations in the scenario.
According to cognitive psychology texts, human tasks are generally grouped
into monitoring process parameters/trends, processing/understanding infor-
mation, decision-making, and control actions. However, it is necessary to
define the task types that aid modelling of the specific scenario for a DT.
For this purpose, the PWR startup operation procedure (which has 21 steps)
was analysed. The defined tasks are decision making, discrete control, and
continuous control. Table 1 shows examples of task definitions based on the
actions as directed by the procedures. It should be noted that conventionally,
all tasks in NPP operations are highly procedural. This means that these task
definitions based on the operating procedures have high fidelity.

Table 1. Example procedure actions and task definitions.

Step Task Type Action
1 Decision Making Determine the rate of power increase in %/h
2 Continuous Control Withdraw all control rods to the position of 100% reactor

power while maintaining the reactor power at 2%
through boration.

3 Continuous Control If all the control rods are withdrawn, increase the reactor
power from 2% to 6%-10% by reducing the boron
concentration.

4 Discrete Control If the reactor power is 10%, the turbine RPM setpoint is
1800 RPM.

21 Discrete Control If the reactor power is between 90% and 100%, the load

setpoint is 900 MWe.
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The PGM Modeling Approach

To demonstrate the transformation of a baseline NPP into a unique DT result-
ing in experimental data for model calibration and performance evaluation,
we consider a probabilistic graphical model (PGM) approach to modeling
digital twins. The ‘PGM’ for DT was proposed by (Kapteyn et al., 2021)
where they considered the physical asset and it’s digital twin evolving in their
respective states through time as depicted in Figure 3. The DT can estimate
the state (current and future) of the physical asset based on observational
data and thus is able to provide optimal control inputs to direct the physical
asset to the desired states.
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Figure 3: Conceptual model of a physical asset and its digital twin, evolving over time
through their respective state spaces (modified from Kapteyn et al., 2021).

Mathematical Abstraction for the Startup Operation Including
Human Actions

A mathematical abstraction must begin with the definition of significant vari-
ables necessary for the model. In the case of our model, there are six variables
that are considered: the physical state (S¢), observable data (Ot), digital state
(Dt), control inputs (Ut), quantities of interest (Qt), and reward (Rt). Phys-
ical states are the parameterized states of the physical assets. Digital states
are the parameters that define the computational models comprising the dig-
ital twin. Observable data is the available information describing the state
of the physical asset. Control inputs are the actions or decisions that influ-
ence the digital asset. Quantities of interest refer to the parameters describing
the asset that are estimated via model outputs. Reward quantifies the overall
performance of the asset-twin system.

The interaction between the physical asset and its digital twin is facilitated
through information flow. For example, the information flow in the form of
observational data oy, from physical assets to its digital twin, updating the
corresponding digital state in the process. Quantity of interest Q; ~ p(q,)
are then computed by the updated digital twin model. The digital state and
the computed quantity of interest serve as control input #; from the digital
twin back to the physical asset. For the realm of NPP startup operation in the
physical asset alone, these control inputs and quantities of interest are human
cognitive actions or automated. The reward for the timestep R; ~ p(r,)
is determine by all these quantities. Upper-case represent the random vari-
ables while the lower-case denotes their values. Meanwhile, the graph edges
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are encoded through a conditional probability or a deterministic function to
represent the dependencies between variables.

The PGM approach allows us to define known or assumed conditional
independence. The model encodes both the physical and digital state based on
Markov assumption observable through data. By exploring the conditional
independence, the joint distributions over variables can be factorized in the
model as follows:

p(D(),...,Dtc,...,QO,...,QtC,RO,...,RtC

_ ﬁ [ﬁ;lpdateﬂ?olg?valuation] , (1)

OO,...,Otc,...,uo,...,utc)

t=0
Where,
g;]pdate =p (Dt|Dt71> U1 = #;-1,049 = Ot) 5 (2)
92 = p (Q:[Dy) G)
ﬁfvaluation =p (Rt‘Dta O U = u;, O = ot) . (4)

By expanding the states to include digital state, quantity of interest and
reward variable, the state can be predicted to t,. The factors in Equation 1
are conditional probability distributions that characterize the interactions in
the models comprising the digital twins. The Bayesian inference algorithm
leverage the equation to enable key digital twin capabilities such as asset
monitoring, prediction, and optimization.

Formally, the system is modeled using a dynamic Bayesian network with
the inclusion of decision nodes. The graph represents the system from initial
timestep, t = 0, to current timestep, t=t¢, and into future timestep, t=t, as
illustrated in Figure 4. The nodes in the graph are random variables, denoting
each quantity at discrete point in time. The time evolution of the physical
asset state S¢~p(s¢) and digital state D~p(d;) are represented by the upper
and lower left-to-right path in Figure 4, respectively.

Figure 4: A dynamic decision network for the NPP’s physical asset and its digital twin.
The nodes with bold outlines are observed quantities while others are estimated using
probability distribution (adapted from Kapteyn et al., 2021).
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Based on the system physical quantities and human cognitive actions, the
PGM parameters in the startup operation of the NPP is abstracted as shown
on Table 2.

Table 2. A representation of the PDM parameters for the startup operation of a PWR

plant.

Physical Observable data (Oy) Control Inputs Digital State (Dy) Quantities of Reward
State (S;) (Up) Interest (Qy) (Ry)
System PRZ level =100%, RC Rod control - - -
cooling temp = 60C, RC (banks A&B) -
and pressure= 27Kg/cm?2, part
venting SG pressure= 1Kg/ withdrawals

cm?, SG level =100%, (65% & 30%

& Reactor Power= 0% respectively)
Cold PRZ level = 100%, RC Boron control RC temp PRZ level, RC RC temp.,
shut- temp=<176C, RC (increase boron =<176C, SG temp., RC RC
down pressure= 27Kg/cm2, conc.) level =<60% pressure, SG pressure

SG pressure = 1Kg/ pressure, SG

cm?, SG level=<60%, level, & Rxtr

& Rxtr Pwr= 0% Pwr.
Hot shut- PRZ level = 20%, RC SG level PRZ PRZ level, RC PRZ level,
down temp=>176C, RC control (auto.) level = 20%, RC temp., RC RC temp

pressure < 157Kg/ cm?, pressure = 27Kg/ pressure, SG

SG pressure < cm?, SG pressure, SG

76.6Kg/cm2, SG pressure = 1Kg/ level, & Rxtr

level<100%, & Rxtr cm Pwr.

Pwr= 0%
Hot PRZ level=<50%, RC Rod control PRZ level PRZ level, RC PRZ level,
standby temp < 294C, RC pres- (bank A-full =<50%, RC temp., RC RC temp,

sure =<157Kg/ cm?, SG withdrawal), temp < 294C, SG pressure, SG SG level.

pressure=<76.6Kg/cm2, (banks B &C- level=<50%, pressure, SG

SG level=<50%, & part Rxtr Pwr= <2% level, & Rxtr

Rxtr Pwr= <2% withdrawals i.e. Pwr.

65% & 30%
respectively)

Power PRZ level = 50%, RC Boron control RC PRZ level, RC Rxtr.
Increase temp=<308C, RC (increase boron temp=<308C, SG temp., RC Power, RCS
(genera- pressure= 157Kg/cm2, conc.) level = 50%, pressure, SG temp
tion) SG pressure = 76.6Kg/ Rxtr pressure, SG

cm?, SG level = 50%, Pwr=<100%. level, & Rxtr

& Rxtr Pwr =<100% Pwr.

PRZ=Pressurizer, Rxtr Pwr=Reactor power, RCS=Reactor coolant system, SG=Steam generator

CONCLUSION AND FUTURE WORK

This paper addresses the challenge of representing complex human actions
of the startup operations in an NPP’s digital twin. This effort is a preliminary
work that establishes a framework that will be expanded for a complete DT
system where models intelligently inform the control system to manage the
NPP startup operation within the prescribed limited conditions of operation.
Furthermore, we can tackle the underlying computation challenge by formu-
lating the problem as a multi-user game, where the NPP assets can partially
offload tasks to a DT-enabled in-network computing. Thereafter, simulation
results will demonstrate the effectiveness of proposed methods in capturing

complex human actions and optimal resource allocation in the DT-enabled
NPP.
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