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ABSTRACT

This paper describes the phenomenon of user speed-accuracy trade-off in decision
making in time and safety critical domains. We have observed such a behavior in two
simulator studies, using the example of a takeover request (TOR) in a driving simulator
and a search and collect task in an Industry 4.0 virtual reality (VR) environment. In
both studies, some participants were observed trading decision accuracy for reaction
speed, ignoring obvious visual cues, resulting in a failure of the task, which could
have been prevented. The paper describes the phenomena and raises but does not
yet solve the question, how to react to this behavior, either by adapting the process of
Human Systems Integration, or by adapting the design, e.g., with additional escalation
patterns of a co-system.
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INTRODUCTION

User studies in virtual reality (VR) or driving simulators are often used to
include end users or other stakeholders in the design process of human-
machine systems. The simulation environment enables tests of system limit
or system failure scenarios and allows to collect participant feedback in these
situations. This possibility enables test cases in which, for example the tech-
nical co-system does not function properly anymore, or the human reaches
her or his stress or workload limit.

A general observation in user studies is, that there are intraindividual
differences in reaction time and quality. Depending on the subjective per-
ceived urgency and danger, the actual trade-off made by participants might
be completely different from what is required by the use case. Underlaying
paradigms include regulatory models of behavior (e.g. Voß, 2020, based on
Summala, 1988), situational awareness (Endsley, 1995), the task regulation
model (Hockey, 1997) and speed-accuracy trade-offs (e.g. Wickens et al.,
2013, Duckworth et al., 2018) which influence decisions and actions under
uncertainty to solve uncertainty dilemmas (e.g., Flemisch and Baltzer et al.
(in press), Flemisch et al. (submitted)).
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Based on two exemplary studies, the authors want to highlight challenges
in the design of human-AI cooperation, which may lead to a mismatch
between required and actual trade-offs in reaction time and quality, espe-
cially under high time pressure and in dangerous situations. This raises the
questions, a) how human-machine systems can be designed and humans
integrated so that reaction time and quality are well balanced and b) if it
is possible for an AI co-system to detect when a human is making incor-
rect speed-accuracy trade-offs, depending on the use case design, and which
options exist to intervene.

This paper cannot provide an extensive answer to these challenges. It
does, however, provide a description of the problem, enriched with examples
and ideas on how to address these issues in the design phase of a human-
machine system with the overall goal to foster an intelligent Human Systems
Integration.

First Example: Driving Simulator Study on Takeover Behavior in
Highly Automated Driving

The first exemplary study is a driving simulator study, described in full detail
by Usai et al. (in press). N = 24 Participants followed a driving course includ-
ing two different use cases (see Figure 1), in which the automation requested
a takeover by the participants, resulting in 48 recorded reactions to a TOR.

Figure 1: Snapshots of both use cases in all three different HMI designs (Usai et al., in
press).

While driving, whenever a dedicated lane for automated driving appeared,
they entered highly automated driving mode and proceeded to play a Tetris
game on a center stack display. The first use case consisted of an unregu-
lated four way crossing that had to be crossed straight and which three other
vehicles entered at the same time, of which the right one would always take
the participants’ right of way by starting to move when participant would
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start to move.1 The second use case included the appearance of a breakdown
vehicle standing in the center lane of a three-lane highway with dense traffic
on the left lane, leaving only two choices to proceed without a fatal crash:
Either changing to the right lane and overtaking the breakdown vehicle or
stopping in front of it. Participants were divided into three groups to test
three different interaction designs of the takeover request (TOR).

All TOR were triggered using an auditory warning, followed by a takeover
design, which was different for each group. The first design would simply
hand over control right after the TOR, regardless of human reaction. The
second design would transfer control as soon as the human takes over or enter
a minimum risk maneuver (MRM), if the human would not take over. Finally,
the third design is based on the second one and adds a second warning layer,
which is attention-sensitive and only triggered if the driver did not react to the
first warning at all (based on gaze and control input data), as well as visual
cues to it to guide the driver’s attention. This includes a symbol, prompting
the driver to take over, and, in the first use case (crossing), red marking on
the ground in front, and for the second use case a red marking to the left (see
Figure 1, bottom right), a green arrow on the ground in front pointing to the
right lane and a green marking of the lower right edge of the windshield. All
these cues are meant to guide the driver to take over the driving task and help
decide on which action to take next. As soon as participants took over, all
visual cues were turned off.

Figure 2 displays one participant of group three at the time of takeover in
the second scenario. The front screen shows an extensive implementation of
a head up display (HUD), featuring especially a red wall towards the left lane
to signal the dense traffic and a green arrow to and a green corner on the
right lane, signaling that it is safe to change to the right lane, because there is
no traffic.

Figure 2: Driving simulator study setup. One of three groups of participants received
extensive HUD feedback (design 3; red “wall” and green arrow as displayed in the
figure).

1To give more details on the background of this second use case: It was simulated that the ego vehicles
and two others were interconnected, and their automations cooperatively decided on a priority list, which
allowed the participant to drive first. The one to the right of the participants’ vehicle, however, did not
have such capabilities, which made the automation issue a takeover request to the participants to fall back
to a human-human cooperation between the two vehicles’ drivers.
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To determine the participants’ reactions after the TOR, video recordings
of the situations were evaluated. All participants reacted by reaching for the
control inputs and changing their gaze behavior. Whenever participants per-
formed an action other than a light braking2 right away (less than one second
after the first reaction), it is assumed that they traded for speed as a takeover
strategy. Whenever they wait or look at different areas of interest other than
the front view, i.e., look in mirrors or the instrument cluster, it is assumed
that they traded for accuracy.

Outcomes of the situation are classified into successes and failures, based
on whether they experienced a crash within the simulation or not. A failure
can be a collision with the vehicle upfront, with other traffic or with the
guard rail on the highway. Results, split by reaction, are presented in Table 1.
For N = 24 participants and two use cases, there are in total 48 encounters;
n = 9 participants experienced design 1, n = 7 design 2, and n = 8 design 3.
Reactions are classified as “no reaction” (participant did not give input on
lateral or longitudinal controls other than light braking), “lane change (LC)
right” (participant did change to right lane and might have used the pedals),
“lane change (LC) left” (participant did change to left lane and might have
used the pedals; this always coincided with a collision with left lane traffic),
and “brake only” (participant did brake, but gave no lateral input).

Table 1. Classification of successes and failures of the outcomes of all 48 situations.

successes no reaction LC right LC left brake only total

Design 1 0 7 0 2 9
Design 2 3 2 0 2 7
Design 3 1 3 0 7 11

failures no reaction LC right LC left brake only

Design 1 8 0 0 1 9
Design 2 1 0 4 2 7
Design 3 0 0 3 2 5

The results of interest regarding the participants’ speed-accuracy trade-off
are failures of participants in Design 3 when performing a lane change to the
left (only in use case 2: breakdown vehicle). Whilst in general, Design 3 turns
out to lead to fewer failures, still three participants collided with traffic while
changing lanes, despite the design itself warning them to not change to the left
lane by placing a big, red wall on the left side, and encouraging changing to
right lane with other cues. Two of those three participants were observed to
decide for a lane change right away, while the third one first observed the sit-
uation before acting on the decision. This leads to the alternative hypothesis
that those participants did either not recognize the visual cues, purposefully
ignored them or did not understand their meaning, all within the timeframe

2As in Design 1, control is transferred right after the TOR, vehicle velocity drops right away. To be able
to compare Design 1 with the other two, similar behavior of the human i.e., a light braking right after the
TOR, is ignored.
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starting with the reaction to the TOR and ending with the decision execution
of the lane change.

Second Example: “Impact of Visual and Auditory Warning Signals on
Path Compliance in Virtual Reality Under Time Pressure”

In the second study, N = 8 participants had to complete a search and collect
task in a virtual reality (VR) warehouse environment (see Figure 3) under
time pressure. Visual and auditive warning signals were activated to alert
users when they have strayed from a predefined path and should trigger their
return to the intended walking route. A within-subject design method was
used to investigate whether the cues achieve the desired effect to prompt users
to return to the predefined path.

Figure 3: The VR warehouse scenario in which the test subjects had to navigate to and
select the highlighted object on one of the four pillars. Leaving the grid-marked path
triggered the warning effects.

To immerse the users into the VR warehouse setting the HTC Vive Pro Eye
head-mounted-display connected wirelessly to an Intel i7 workstation with
an Nvidia GeForce 2080ti graphics card. The simulation was always rendered
with over 75 frames per second. The physical laboratory space exceeded the
virtual warehouse in size and was free of obstacles, allowing users to navigate
the simulation freely without physical restrictions.

The intent behind the visual (a) and auditive (b) cues is to signal the user
that something is amiss, leveraging alertness known from gaming environ-
ments (visual effect) or parking situation (auditive signal) to encourage a
change in behavior. The signals serve as a form of punishment and aim to
both alert the user to a problem (in our case, straying from the path) and
to encourage them to restore the previous state (returning to the predefined
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path). While the warning signals are activated, the user should feel a sense of
discomfort.
a) The visual discomfort is inspired by the known damage effect in shooter

games where the display turns red every time a bullet is hitting the player. To
replicate this in a non-gaming context, a pulsing transparent red layer was
overlaid on the user’s view. Over time, the frequency of the pulsing increased,
possibly intensifying the urgency for the user to correct their course.
b) The auditive discomfort is inspired by the known warning sound from

a parking situation if an obstacle is close. The frequency is synced with the
pulsing of the visual effect and was set to a higher volume than the common
background noises of the environment.

Figure 4: Flowchart of the study. After the introduction, the test subjects first went
through a scenario without trigger effects, followed by a questionnaire, the condition-
ing and control scenario and a final interview.

After a short introduction on how to interact in virtual reality, the users
spawned at the starting point in the warehouse as shown in Figure 4. They
were given around 30 seconds to acclimatize to the new setting before they get
teleported back to the starting point and the baseline scenario began. Their
task was to navigate by natural walking to the highlighted object located on
one of the four pillars and select them with the controller. There was only
one object highlighted at the same time. The participants were told that their
time needed to finish the scenario was measured. In the Scenario Baseline, no
warning signals were activated if the participants went off the metal grids.
In the following Scenario Conditioning they had to repeat the tasks as in the
Scenario Baseline but while off the metal grids, visual and auditive signals
were triggered as described before. In the Scenario Control the signals were
deactivated again. At the beginning of each scenario, the participants were
placed back to the starting point. The participants were not informed about
the warning signals before the experiment and had to find out for themselves
what triggers them and eventually, how to deactivate them again.

To answer whether the warning signals have an impact on the adherence
to stick with the predefined path paired t-tests were employed comparing the
time spent off the path between the following scenarios:
Baseline vs. Conditioning: The paired t-test comparing the Baseline and

Conditioning scenarios yielded a T-statistic of 0.273 and a P-value of 0.793.
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This indicates that there is no statistically significant difference in ‘Time off
path’ between these two scenarios.
Baseline vs. Control: In the comparison between Baseline and Control sce-

narios, the analysis resulted in a T-statistic of 1.799 and a P-value of 0.115.
This suggests that, while there was a trend towards a difference in ‘Time
off path’ between Baseline and Control, this difference was not statistically
significant.
Conditioning vs. Control: The test comparing Conditioning and Control

scenarios showed a T-statistic of 2.397 and a P-value of 0.048. This result
indicates a statistically significant difference in ‘Time off path’ between these
scenarios.

Table 2. The time participants spent abroad the predefined path in seconds while
performing the search and collect task in the different scenarios.

Time off path [s]

n = 8 Baseline Conditioning Control

Mean 19.902 18.610 11.756
Std. Deviation 17.078 15.133 10.506
Minimum 1.040 4.670 0.280
Maximum 48.710 53.430 35.850

Interviews revealed varied perceptions of the warning signals among the
participants. Of the eight, only three (P1, P2, and P6) recognized the sig-
nals as warnings and consciously chose to stay on the path thereafter. P7
acknowledged the peeping sound as an off-path indicator, yet opted to pri-
oritize speed over comfort by disregarding it. Conversely, P4 identified the
warnings as indicative of an error but was unable to discern their specific
cause.

Design Choices for Human-Machine Systems

In both previous examples, which displayed warnings in simulation environ-
ments using transparent red layers, it happened that users were not stopped
by them. It should be noted here that these are qualitative individual obser-
vations. Nevertheless, such observations accumulate across studies, use cases
and situations, which was the motivating factor for this publication.

It is interesting to note that in these cases, participants often tend to pri-
oritize reaction or execution time over accuracy (e.g. Schaefer et al., 2022),
whether consciously, as in example 2, or unconsciously, as in example 1.

In the introduction, the questions were raised as to whether a) human-
machine systems can be designed in such a way that reaction time and
quality are well balanced and b) it is possible for an AI co-system to detect
when a human is making incorrect speed-accuracy trade-offs, and to react
appropriately.

A possible answer to question a) could be an interaction design which
focusses on the actual integration of the human in the overall system. And as
trivial as this may sound, countless socio-technical systems today are more
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likely to have been incrementally adapted to user experience (UX) and inter-
action in late stages of the development or even after the release of the system,
rather than actually having focused on usability in the early stages of devel-
opment. Especially in safety-relevant use cases, it is relevant to evaluate and
minimize single cases of failure early enough in the development cycle.

The early integration of humans into the system can be implemented
using tailored development methods (e.g., bHSI innovation turbine, Flemisch
et al., 2022), allowing to identify unexpected reactions of future users and
their causes at an early stage and to develop suitable warning methods
together with future users (Human Systems Exploration, Flemisch et al.,
2013, Preutenborbeck et al., 2024 (in press)) which can be adapted in real
time (Exploration sandbox, e.g., Bielecki et al., 2020).

Question b) could be addressed by learning from user reactions and sub-
sequent results observed in the past and using them to evaluate behavior and
reaction patterns observed in real time. This approach has been used, for
example, to predict the takeover quality of drivers by analyzing their ori-
entation response to a TOR and comparing this orientation response with
previously recorded ones ( Herzberger, in press, Flemisch & Herzberger et al.,
in press). Similarly, a database could be used to compare gaze paths, for
example, which would be constantly fed with further gaze sequences if such
an ignoring of a cue is recorded. In this way, patterns could be identified that
could initially be responded to with a further warning level and, in a second
step, an interaction design adapted to these patterns could be developed.

CONCLUSION AND OUTLOOK

In two different user studies, a similar behavior of participants ignoring parts
of a warning was observed. While most of the participants understood, that
the co-system was pressuring for human action, hints on which action to take
were still ignored by the same participants.

This observation was only made on a fraction of participants, however,
depending on urgency and criticality of the warning, the design of human-
machine system needs to work for all users and balance reaction speed
and accuracy accordingly. One expedient solution would be, to integrate
human users into the system design as early as possible. Another solution
could be to discover these speed-accuracy trade-offs in real time, and allow
a co-system to react on it, e.g., by giving hints or training after the fact,
or by reacting in real time by using stronger escalation patterns. The phe-
nomenon also opens the question of how much freedom we build into our
human-machine systems, and how much unsafe speed-accuracy trade-offs
we tolerate as a society and as individuals to balance safety and freedom in a
self-determined way.
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