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ABSTRACT

This paper proposes a mobile application with a job recommender system (JRS)
based on machine learning (ML) techniques to address the challenges faced by under-
graduate and fresh graduate students in finding suitable job opportunities. The JRS
utilizes content-based filtering (CB) with the Count Vectorizer function and cosine
similarity to match student profiles with job requirements. The application provides
personalized job recommendations for students and suggests potential candidates to
companies. The findings demonstrate the efficacy of the proposed approach in bridg-
ing the gap between students and industries, aiding in practical experience acquisition
for students and addressing recruitment challenges for startups and SMEs.
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INTRODUCTION

Practical experience plays a vital role in helping students determine their
desired fields, bridging the gap between the labor market and the academic
output of university students. Startups and small and medium enterprises
(SMEs) have been recognized as effective drivers of economic and social
growth by providing valuable services and employment opportunities. These
companies also contribute to the development of technical and managerial
skills through training programs. However, SMEs often face challenges in
recruiting and training manpower due to their limited resources and the
absence of dedicated human resources (HR) departments (Shah et al. 2020).

Technological advancements have revolutionized recruitment methods,
offering solutions to various challenges. The recruitment process, a critical
function of HR departments, aims to identify the most suitable candidates
for company positions. Tech giants have introduced innovative approaches,
utilizing technical services and improved e-recruitment platforms to enhance
employee recruitment and extend work flexibility. While e-recruitment plat-
forms efficiently reach a large pool of potential job seekers, they often
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struggle with accurately matching applicants with job requirements using the
Boolean search technique (Mashayekhi et al. 2022).

To address these challenges, artificial intelligence (AI) techniques are
increasingly employed in e-recruitment processes. AI algorithms excel in han-
dling repetitive tasks, enhancing hiring processes, increasing work flexibility,
and improving decision-making, thereby reducing time and effort required
for hiring. Organizations are encouraged to adopt these advanced tech-
nologies to gain a competitive advantage in recruitment and selection, with
recommender systems (RSs) becoming crucial in achieving optimal matches
between job seekers and jobs (Abia and Brown 2020; Gryncewicz et al. 2023).

This research project aims to design and develop a mobile application
that supports the Arabic language. The application targets both students and
startups/SMEs, offering a platform for startups and SMEs to find suitable
employees for essential tasks and projects. Simultaneously, students, includ-
ing high school, university, and fresh graduates, can access job opportunities
aligned with their interests, developing their skills and building their careers.
The application provides flexibility, enabling students to utilize their free time
and gain practical experience. By strengthening students’ resumes and provid-
ing practical experience before graduation, they become familiar with market
needs and can actively work towards meeting them.

The paper is organized into five sections. Section 2 reviews related works
in the field. Section 3 presents the system design. Section 4 describes
the challenges anticipated during and after implementation. Finally, Sec-
tion 5 concludes with a summary of our findings, future work, and design
considerations.

BACKGROUND

Recommender Systems General Framework

RSs have proven to be highly advantageous in various domains, includ-
ing e-business, where job recommender systems (JRSs) play a crucial role
(Zangerle and Bauer 2022). JRSs differ from other RSs as they facili-
tate a bidirectional recommendation process between job seekers and job
candidates, providing recommendations for both parties (Al-Otaibi 2012;
Dhameliya and Desai 2019).

Previous studies such as (Isinkaye et al. 2015; Schafer 2011) have outlined
a general framework for RS operations, comprising three essential phases:
Information Collection Phase: In this phase, the RS gathers comprehensive
user information to generate accurate recommendations. Information collec-
tion can occur through three main approaches. The first approach is explicit
feedback, where users provide information directly through system inter-
faces. The second approach is implicit feedback, which involves inferring
information from user behavior, such as navigation history, button clicks,
and page dwell time. The third approach is hybrid feedback, which com-
bines explicit and implicit feedback to overcome the limitations of each
approach. Learning Phase: Learning algorithms are employed to analyze
the user data collected during the information collection phase. These algo-
rithms help identify patterns that are relevant for specific recommendation
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scenarios. Recommendation Phase: This phase is the core component of RSs,
where recommendations are generated based on the patterns learned dur-
ing the previous phase (Schafer 2011). Recommendation generation can be
accomplished by directly utilizing the datasets acquired during the informa-
tion collection phase, either through memory or model-based approaches, or
indirectly by leveraging observed user actions within the system.

Recommender System Technique

RSs usually predict that good recommendations can be made to the user
using effective recommendation techniques. Several recent studies (Das et al.
2017) have stated that the RSs can be divided into personalized and non-
personalized RSs, as represented in Figure 1. The Personalized RSs aim to
recommend items to users according to their previous behavior. This type
of RSs is classified into three main approaches namely collaborative filter-
ing (CF), CBF, Hybrid filtering and other approaches for recommendation
systems.

Figure 1: Recommender system techniques.

Major Challenges in Recommender Systems

Recommender systems (RSs) encounter various challenges that can signifi-
cantly impact their effectiveness. These challenges include the cold-start prob-
lem, data sparsity, scalability issues, overspecialization, and shilling attacks.
This section discusses these challenges and examines proposed solutions by
researchers.
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The cold-start problem arises when RSs encounter new users or items
without any historical data, making it difficult to provide accurate recom-
mendations. Collaborative filtering (CF) approaches are particularly affected
by this problem (Mohamed et al. 2019). To address the cold-start problem,
(Halder et al. 2012) introduce the concept of “movie swarm mining.” This
approach mines popular and interesting movies to generate initial recommen-
dations for new users. For new items, a set of movies suitable for planning
recommendations is identified through movie swarm mining, and these
movies are suggested to related interested users who form a swarm within
a group. While this method demonstrates effectiveness, it has limitations in
identifying user groups solely based on movie genres.

Data sparsity is another challenge in RSs, as users often rate only a frac-
tion of the available items, resulting in a sparse user-item matrix (Thorat
et al. 2015). One potential solution to the data sparsity problem is to reduce
the dimensionality of the user-item interaction matrix by generating clusters
of the most relevant users and items. These reduced matrices can then be
used for prediction purposes (Chen et al. 2011). Another approach involves
utilizing singular value decomposition (SVD) to create a low-dimensional
representation of the original customer-product space (Sarwar et al. n.d.).

As RSs accumulate and process increasingly large and dynamic datasets,
the computational complexity of making predictions can become a bottle-
neck. Memory-based CF algorithms suffer from scalability issues as they use
the entire dataset for recommendations, while model-based approaches offer
better scalability (Dhameliya and Desai 2019).

Overspecialization occurs whenRSs fail to provide diverse item recommen-
dations that may interest the user. Content-based filtering (CBF) approaches
are particularly susceptible to this problem, as they heavily rely on the
user’s previous preferences for similar items (Dhameliya and Desai 2019).
To mitigate overspecialization, (Adamopoulos and Tuzhilin 2014) propose
a probabilistic neighbourhood selection technique for neighbourhood-based
CF recommendations. Rather than solely considering the highest similarity,
the technique considers different degrees of similarity between users. Initial
weights are assigned to each neighbour using a distance metric, resulting in
the selection of diverse neighbours and diverse recommendations.

Furthermore, RSs are vulnerable to malicious attacks aiming to manipu-
late item ratings to deceive the system and generate poor recommendations
(Mohamed et al. 2019). Several detection algorithms, categorized as super-
vised and unsupervised methods, can be employed to identify and mitigate
these attacks.

RELATED WORK

In this section, we reviewed research in this filed. All mentioned studies
are implemented an RS based on a CF technique for job portals. Initially,
the data is obtained through the job portal, which records all users’ prefer-
ences and previous activities. The data is cleaned, and noise is removed from
the users’ documents. The information is initialized before being processed.
After that, the computation model deals make calculations. Finally, users are
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given recommendations based on the result set produced through the model’s
computations.

Zhang et al. (2014) compared user-based and item-based CF algorithms by
constructing a student job hunting systemwith these two algorithms and eval-
uating the system with different similarity methods. They used a job-hunting
website dataset that included 2,503 jobs and 7,610 students’ resumes. The
system was evaluated using precision and recall. The item-based algorithm
achieved higher results than the user-based algorithm, achieving 58.33%
precision and recall based on the log-likelihood similarity method, while
the user-based algorithm with 40 neighborhood numbers achieved 56.41%
precision and recall.

Yadalam et al. (2020) proposed a career RS that suggests applicable careers
for engineering students based on their interests and abilities; the system
allows users to rate the job recommendations based on their experience. The
researchers used a filtering approach to solve cold-start, trust, and privacy
problems associated with CF approaches. The cosine similarity method was
used to find similarities between user preferences and the jobs, and the Python
language was used to apply machine learning algorithms. The dataset they
created contained 17 suggested job-role labels as columns and 20,000 entries
from multiple databases.

Mpela and Zuva (2020) implemented a mobile proximity job employment
RS with clientserver architecture to identify the most suitable job seeker for
temporary job employment in a particular area. They used a CBF recommen-
dation algorithm to find the similarity between resumes of job seekers and
job descriptions; a VSM was used to represent selected features and cosine
similarity to calculate similarity. In addition, google maps were used to find
the distance between the job seeker and the job area to incorporate the job
seeker’s proximity into the recommendation process. The dataset consisted of
203 job descriptions and 1,431 resumes extracted from the Kaggle website.
Results showed that the system achieved an impressive performance, with a
0.994 precision value and 0.975 recall value.

SYSTEM DESCRIPTION

The proposed system has three main users: An employer who posts the jobs,
a student who applies for the posted jobs and an admin who maintains the
database.

The system’s front end provides an interactive interface to potential users
and manages access to and storage of users’ data in the database. In gen-
eral, the process begins with initializing the data that has been read from the
database, then getting the numeric features from the data as vectors. Then, the
similarity measurement is applied to the vectors to get the top-recommended
jobs/students according to the similarity score. The architecture of the system
is shown in Figure 2.

To meet the needs in the field of HR through the development of modern
techniques in the hiring process. The algorithm is created for this project to
make proper job recommendations. So relevant information was extracted
regarding the student’s profile and job description for the jobs offered posted
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by the company. The job dataset was collected manually from the Ns3a hir-
ing application ( - ns3a | n.d.) containing different
fields including job title, company name, city, job field, required major, and
required skills. The student dataset was also collected through a web-based
questionnaire that was published to the students to collect data, containing
different fields including student name, city, major, skills, and preferences.
Therefore, the application deals with Arabic dataset consists of 69 jobs and
159 students. After the information is collected, it needs to be prepared for
the data initialization phase of the data in the algorithm, so it is stored as
comma-separated values (CSV) files. The CSV file contains different columns
as mentioned above. Then all the students’ and companies’ information are
stored in the database.

Figure 2: System architecture.

SYSTEM IMPLEMENTATION

Student-job application is based on achieving the best match between the
student job seeker and the employer. To be more specific, the JRS mimics
two things: (1) recommend suitable jobs for students based on their pro-
files, (2) recommend suitable students for the offered job based on the job
requirements. Mpela and Zuva (2020) state that the aim of CBF involves
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matching the content of the user profile with the same content of the descrip-
tions of the items. Therefore, the CBF approach is used in this application.
The following subsections presents the process needed to demonstrate the RS
implementation stage

Data Initializing

To initialize the data, the columns used in the recommendation process are
selected from the database: form the student’s table (Major, Preferences,
Skills) and jobs (Job title, Job field, Required major, Required skills), then
combined the selected columns of each table to create a corpus of text for
each job and student.

The data in the corpus of text is cleaned up by removing the stop words and
non-alphanumeric characters, then assigned the data of each corpus to the
“Features” column to deal with the ML model for vectorized and similarity
computations.

In the clean_text function, NLTK library is used to provide access to algo-
rithms to complete a task, as well as access to tokenization, stop words
and normalization packages. The two functions were called from the NLTK
library are word_tokenize() function which is used to break the sentence into
words, and the stopwords() function that remove stop words in Arabic and
English languages. In addition, some common Arabic words were removed
by using external text file “arabic_common_words_file”.

Feature Extraction

Since the ML model deals with only data machine-readable, the vectoriza-
tion process is the first step towards making text content machine-readable.
There are many techniques that can be used to extract the features, in this
project, two techniques were used by calling them from Scikit-Learn (Sklearn)
library, each one is explained below. Sklearn is a ML library in Python that
contains a lot of efficient tools for ML and statistical modeling, including
feature extraction, similarity metrics, and clustering.

TF-IDF Vectorizer: The tfidfVectorizer() function is used for term weight-
ing in information retrieval systems (Dhanya and Harish 2021), it converts
a collection of raw documents to a matrix of TF-IDF features. TF measures
how frequently a term occurs in a “Features” column of the jobs and stu-
dent profiles, while IDF measures how important a term is according to the
following formula:

TF(t) =
Number of times term t appears in a document

Total number of terms in the document

IDF(t) = log
(

Total number of document
Number of documents with term in it

)
TF− IDF(t) = TF(t) ∗ IDF(t)

This means the word with a higher TF-IDF score is the rarest word in each
document and does not appear commonly in other documents and vice versa.
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Count Vectorizer: The CountVectorizer() function calculates the weight of
a word by counting how many times it appears in a “Features” column of the
jobs and student profiles. It converts a collection of documents to a matrix
of token counts by separating the text as a token and each token represented
as an index, then creates a matrix of the token’s indices against the repetition
number of each token.

Similarity Metrics

JRS can use different measures of similarity measurements approaches. The
cosine similarity is the most common measure used to measure the similarity
between two vectors in information retrieval (Mpela and Zuva 2020). Since
the cosine similarity is mostly used in content-based RSs (Diaby et al. 2014)
and several JRS based on content (Mpela and Zuva 2020; Yadalam et al.
2020) have used cosine similarity to measure the similarity, and their results
were satisfactory. Our experiments used the cosine similarity to measure the
similarity by calculating the cosine of the angle between the student profile
and the jobs vectors.

EXPERIMENTS AND RESULTS

In order to determine the best model, this project conducted three inde-
pendent experiments to get the best top 10 recommendations: (1) CBF
recommendation based on TF-IDF with K-Means clustering (2) CBF recom-
mendation based on CountVectorizer() with K-Means clustering based on
weighting. (3) CBF recommendation based on CountVectorizer() based on
weighting. Since the evaluation metrics of the RS required a training dataset
to obtain the accuracy score and our dataset is a testing dataset, we assess the
relevance of our recommendations manually by selecting random users from
the dataset.

First Experiment: the scores of cosine similarity between the student’s
profile and all the offered jobs results are arranged based on the top 10
similarities for a student’s recommendation where the TF-IDF Vectorizer
algorithm was applied to the column. To improve the order of the top-10
recommendations, the K-means clustering function called from the sklearn
library to make the jobs that have the same cluster as the given student
profile appear at the beginning of the list. K-means clustering algorithm par-
titions the jobs dataset into k different clusters such that each subset belongs
to a group with similar characteristics (i.e., close to the same center point)
(Al-Otaibi 2012).

Second Experiment: to improve the result, the “Skills” column of the stu-
dent profile table and the “Required skills” column in the jobs table were
divided into three columns: for student table (Specialized skills, General skills,
Languages), and the jobs table (Required specialized skills, Required general
skills, Required languages). The s_column_weight() and j_column_weight()
functions give specific weight for each column used in the recommendation
process according to the priority we need when listing the recommendations.
After that, the CountVectorizer algorithm is used before applying cosine sim-
ilarity to convert the given student information text to a vector instead of the
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TF-IDF algorithm. Because in our case, the frequency of a word is important,
and the TF-IDF algorithm as mentioned before, gives the words that are more
present in the other documents less importance.

Third Experiment: this experiment is similar to experiment 2, except that
we tried to use the K-means clustering algorithm to get the top-10 recom-
mendation based on matching between the jobs cluster and the given student
cluster.

The result of the first experiment did not have satisfying order of the rec-
ommendations list. That is why in the other experiments, we prioritized some
columns to make the recommendation result based on them. The second
and third experiments’ results indicated that the order of recommendations
was similar. However, in some cases, the results of the third experiment
were worse due to the inaccuracy of the clustering. Therefore, the second
experiment had the best results for the recommendations list than the other
two experiments described above as it was adopted as the proposed CBF
recommendation algorithm.

A cold start problem may occur in JRS for new users since the system can-
not recognize their preferences and interests. To overcome this problem in our
system, we ask the student when creating the account to enter his major and
preferences so that the recommendation results depend on themwhen signing
in for the first time. Once the profile is filled out, the recommendation results
are based on it. The proposed algorithm was applied to the company side to
recommend suitable students for the posted job. We assess the relevance of
our recommendations manually by selecting random jobs from the dataset.

CONCLUSION

It is recommended that organizations adopt the latest technology, such as
recommender systems (RS), to gain a competitive advantage in the recruit-
ment and selection process. These techniques can help achieve the optimal
match between job seekers and jobs. This project successfully developed an
Android application that utilizes a Job Recommender System (JRS) based on
a Content-Based Filtering (CBF) algorithm. The JRS connects students with
startups and SMEs by matching their profiles with job requirements. Despite
challenges related to dataset availability and the cold-start problem, the algo-
rithm showcased convincing results. Future work includes further improving
the algorithm by incorporating Collaborative Filtering (CF) and enhancing
result filters for different operating systems. By embracing these advance-
ments, organizations can enhance their recruitment and selection processes
to effectively meet the needs of both job seekers and employers.
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