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ABSTRACT

High comfort is one of the main demand for a modern vehicle. Comfort functions that
are designed to ensure the comfort of modern vehicles are becoming more tailored
to each driver. In order to maximize the effectiveness of comfort functions the driver
must be precisely identified. The driver identification task can be accomplished by
utilizing vehicle data from the standardized On-Board Diagnostic II system (OBD II).
In this paper, the feasibility of precise driver identification was investigated based
on unsupervised machine learning methods. The authors propose the USID (Unsu-
pervised Identification of the Driver) concept for this purpose. The USID promises
rich scalability since the unsupervised models don’t use predefined classes to iden-
tify drivers. The unsupervised methods used in this work are K-Means, Autoencoders,
Self-Organizing maps, and Density-based spatial clustering (DBSCAN). The models
are trained and evaluated using the OBD II time series of 16 drivers driving the same
vehicle. In the end, the experimental analysis of the USID was done that showed very
good confidence of the concept in driver identification during the driving cycle of all
16 drivers.
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INTRODUCTION

Modern vehicles must meet the rapidly increasing customer requirements for
in-vehicle comfort. An increase in comfort and safety is a main objective of
car manufacturers as well as of their suppliers and a substantial distinguish-
ing feature in the market (Bloecher, Dickmann, and Andres, 2015). Vehicle
comfort functions are designed to ensure comfort with a more pleasant and
convenient driving experience, including thermal comfort, seating comfort,
noise reduction, and entertainment systems. Interaction with these systems
plays an important role in ensuring comfort and elevating the overall driver
experience, therefore they are becoming more tailored for each driver. In
general, there is a considerable level of consumer acceptance for automated
comfort functions for the highest levels of automation (4 and 5) (Guinea et al.,
2021). Thermal comfort represents one part of the comfort in the vehicle
which is perceived as subjective and relative. In contrast to its subjective-
ness, it has been successfully developed driver-specific (Lahlou, 2020, 2020;
Schaut, 2019; Xie, 2020). Furthermore, the automatic drive seat positioning
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and rear mirror setting in the ride comfort profoundly influence the driver’s
fatigue (Sharma et al., 2021). Many in-vehicle functions can be controlled by
the driver while the vehicle is in motion. With that in mind, a driver-specific
user interface of an infotainment system can be applied on a vehicle to ensure
seamless driver interaction (Kern, 2009; Stang, 2022). All of these comfort
functions assume that the driver is identified successfully. Therefore, in order
for a vehicle to uniquely recalibrate each comfort function, it is imperative
that the driver is precisely identified.

Existing driver identification systems are functional, yet they exhibit lim-
itations in precision or practicality. For example, a vehicle could detect the
presence of a driver’s smartphone but fail to distinguish whether the individ-
ual is the actual driver or a passenger. Similar approaches are proposed with
the biometrics methods for driver detection, such as fingerprint, eye scan, face
recognition, etc. Their high precision comes with the price of data protection
endangerment, especially with oncoming connected vehicles, leaning them
towards impracticality. The unique signature of each driver’s style is encoded
within the time series data collected from various vehicle sensors. Vehicle
data contains valuable information allowing recognition and understanding
of the unique driving patterns and behaviors of individuals. Therefore, there
is no need for integrating novel driver identification sensors, as the identifi-
cation task can be accomplished by utilizing vehicle data from the On-Board
Diagnostic II system (OBD II). The numerous OBD II parameters available
through the CAN interface lay a strong foundation for in-vehicle Machine
Learning (ML) processing, besides their main OBD II purpose.

RELATED WORK

The ML techniques represent a viable choice for creating a driver identifica-
tion system with data-based models when a valuable amount of quality data
is available. The high quality, variety, and availability of the aforementioned
OBD II data make it a valid choice to use these data-driven modelling algo-
rithms as a foundation for this type of in-vehicle system. Supervised machine
learning models are trained on labeled data, in this case, driver IDs, allow-
ing them to detect specific drivers based on historical information fed to
it during training phases. On the other hand, unsupervised machine learn-
ing deals with uncovering patterns within the OBD data itself, enabling the
recognition of distinct driving styles without predefined driver IDs. Both
approaches offer unique advantages in enhancing the accuracy and practi-
cality of driver identification systems, contributing to increased comfort in
the driving experience.

Considering the research done in the field of ML-based driver identifi-
cation, supervised learning models seem more favorable. Table 1. lists the
research covering driver identification with various purposes and ML solu-
tions. All related work listed utilizes the real recorded data which proves the
relevance of each work.

The related work proved that it is possible to precisely identify drivers
using different supervised algorithms with high accuracy levels of above
90% in all mentioned research. Providing its advantages with high precision
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achieved with labeled training data, the disadvantages lead towards low scal-
ability and robustness of models. Unsupervised machine learning methods
are barely used for driver identification, missing out on the benefits they can
bring to enhance comfort functions.

Table 1. Summarized ML-based driver identification research.

Study Purpose No.
Drivers

ML Type ML Algorithms

Van et al. (2013) vehicle safety 2 supervised,
unsuper-
vised

k-means, SVM

Khan et al. (2022) driver behaviour 10 supervised k-NN, SVM,
logistic regression,
NB, REP tree

Uvarov,
Ponomarev (2018)

data processing 10 supervised k-NN, decision
tree, random
forest, GB, SVM

Girma et al. (2019) vehicle security 10 supervised LSTM
Xun et al. (2019) vehicle security 20 supervised CNN, SVDD
Kwak et al. (2016) vehicle security 10 supervised SVM, random

forest, NB, k-NN
Enev et al. (2016) data privacy 15 supervised SVM, random

forest, NB, k-NN

USID ARCHITECTURE

In contrast to the related work, this research paper investigates the viabil-
ity of precise driver identification based on unsupervised machine learning
methods on a larger scale. The requirements for modern comfort functions
are a precise, seamless, and scalable driver identification system. Unsuper-
vised learning has the potential to cope with the mentioned requirements in
the context of driver identification available OBD II data. For this purpose,
the authors introduce the USID concept - Unsupervised Identification of the
Driver. Due to its unsupervised characteristic, USID offers significant scala-
bility, as its models don’t rely on predefined classes to distinguish and identify
drivers. This flexibility of USID is valuable when dealing with diverse driver
styles that may not fit predefined categories.

The USID concept is inspired by the known Knowledge Discovery in
Databases (KDD) process (Flawley et al., 1992). In general, a vehicle can
be controlled with different drivers during its exploitation. Regardless of the
driver, the OBD II system internally monitors and diagnoses different pollu-
tion and propulsion-related systems. This represents the input for the USID
concept. Correlating to the KDD, the USID integrates different steps of data
processing, such as data selection, data preprocessing, data transformation,
and the model at the end (see Figure 1). In the first step, the scale of the data
is reduced to the most relevant parameters, before being preprocessed. After
preprocessing, the transformation of the data takes place according to the
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unsupervised ML model later used. Finally, the transformed data goes into
the model that gives the knowledge about the driver identification. Each step
of data processing in USID contains the driver information, which is exploited
using the data processing methodology previously noted for clear reasoning
of driver identification.

Figure 1: USID concept for unsupervised ML driver identification.

PROPOSED METHODOLOGY

The data used to prove the USID concept came from the open-source database
published in Barreto (2018). The original data contains a total of 9,261 rows
from 28 parameters recorded from the OBD II port, making it a viable source
for the machine learning models. The vehicle Chevrolet S10 2.5l was used
with 16 different drivers on one route with a length of 18.8km. The data
has been already uniformly sampled. Additionally, the mentioned dataset
was extended with additional features like longitudinal acceleration and jerk.
Longitudinal acceleration and jerk of a vehicle are generated as a first and
second time derivative of the vehicle speed signal. This was already proven
to give good results in the related research (Enev et al., 2016), therefore
it is expected to give similar results with unsupervised driver identification
models.

In the initial phase of the proposed process pipeline, the data quality checks
were performed with the purpose of identifying and addressing outliers to
avoid any potential distortions in model inferences. In the first iteration,
basic preprocessing took place, unnecessary column information and rows
with empty cells were removed, together with low-variance data. Following,
the rough filtering was done with statistical outliers that were detected and
removed for the majority of features using quantiles.

Next to the preprocessing, data normalization was done. In order to ensure
the relevance of our time sequence comparisons across a diverse range of
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driving contexts, drivers, and vehicles, we utilize global normalization tech-
niques incorporating physical signal boundaries. With that in mind, the
global physical limitation of the OBD II parameters, defined with the SAE
Standard J1979-DA (2017), are combined with the min-max normalization
method.

Feature selection is an important step in data processing using machine
learning methods. In this case, it involves identifying and selecting the
most relevant and informative OBD II parameters from the dataset, while
discarding the features that could harm the performance of future USID
unsupervised machine learning models. By selecting the most applicable
features, redundant or irrelevant data are removed, reducing the dimen-
sionality and computational heaviness of the USID. In this work, a filter-
based feature selection method, the SelectKBest, was used. The goal was
to select the 10 best features that can represent the 16 drivers during their
driving cycles. The result of feature selection narrows down to engine
coolant temperature, fuel level, ambient air temperature, latitude, longi-
tude, altitude, engine rpm, air intake temperature, vehicle speed, and timing
advance. To validate the meaningfulness of the feature selection, the fea-
ture correlation was checked using Spearman’s rank correlation statistical
method.

Upon choosing the most relevant features from the dataset, the data trans-
formation involves altering the selected features to ensure they improve their
interpretability later with the ML model. In this specific case, the Uniform
Manifold Approximation and Projection (UMAP)methodwas used to reduce
the dimensionality of the data, in order to streamline the dataset further,
reducing noise and computational load while retaining the driver identifi-
cation information. The UMAP is a nonlinear dimensionality reduction tech-
nique used for embedding high-dimensional data into a lower-dimensional
space while preserving the underlying structure and relationships within the
data points (McInnes, Healy and Melville, 2018).

Sliding windows represent a fundamental technique in time series analy-
sis, enabling the transformation of continuous time series data into discrete
manageable subsets suitable for both supervised and unsupervised learning
approaches. A window is defined by its length w which moves over the
dataset with a stride s. The temporal data stream is effectively segmented into
coherent chunks. Local patterns are intricately encoded within the sequence
of data, reflecting not just individual data points but the temporal context
they inhabit. In this research, a window length of w = 30 with a stride of
s = 1 is used. For the mentioned dataset this results in 6636 windows. Win-
dows with undefined driver affiliations were neglected due to a lack of back
traceability.

Besides the clustering itself, an autoencoder, presented in section Model
Training, is used to compromise the time windows into one single temporal
dimension. By encoding the temporal dynamics into a one-dimensional rep-
resentation, the autoencoder reduces the convolution while preserving the
essential information.
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MODEL TRAINING

To ensure the highest possible performance of the USID, four different
unsupervised machine learning methods were used, k-means, autoencoders,
density-based spatial clustering, and self-organizing maps. These methods
were chosen due to their diverse methodologies, in order to capture various
data structures and driver patterns.

The k-means clustering is an unsupervised machine learning algorithm
used to partition a dataset into K distinct, non-overlapping clusters. In the
case of this research, the K represents the number of drivers that are to be
identified, 16 in total. The output of the k-means model is the predicted driver
ID, for each time sequence. The success of this model depends highly on the
quality of data processing done previously, especially the data transformation
step. If the dimension reduction technique manages to separate the OBD data
of each driver in non-overlapping order, the k-means would find the fitting
centers of each driver successful. The best results after multiple iterations of
training and validating, gave the k-means with 16 centroids, training iner-
tia set to 10 with 10,000 maximal iterations, and removed randomness of
training.

Autoencoders’ self-supervised nature makes them a suitable choice to
extract relevant features or to cluster input sequences. Therefore, the autoen-
coder can be trained without any labels (Tavakoli et al., 2020). With two
one-dimensional convolutional neural network layers and one linear layer
the encoder compromises the input dimension from (w, f) to (e), where w is
the window length, f is the number of features and e is the dimension of the
embedding space. Besides the direct clustering, the embedding layer can be
used as input for following clustering approaches while containing the intri-
cate patterns of a time series sequence. An embedding space e of 32 is used
for embedding time series sequences. For direct clustering, e corresponds to
the number of driver IDs and is therefore 16.

DBSCAN is a clustering algorithm designed to uncover clusters in noisy
and irregularly shaped datasets. Unlike other clustering methods like k-
means, DBSCAN does not rely on a fixed pre-set number of clusters. It
defines two parameters, eps, and min-samples. Eps determines the maximum
distances within data points that are considered neighbours. Min-samples
specify the minimum number of data points within eps distance to define
a dense region (cluster). From a seed data point clusters are iteratively
expanded to include all direct or indirect reachable data points within the
eps distance, forming dense regions. Data points that remain unreachable or
do not meet the density criteria are considered outliers (Ester et al., 1993).
For the USID evaluation, 0.44 is used for eps and the number of min samples
is 10. The distance is based on an Euclidean distance computed.

Self-organizing maps (SOMs) are a type of artificial neural network that
excels in the field of unsupervised machine learning. Introduced by Teuvo
Kohonen in the 1980s, SOMs are unique in their ability to transform high-
dimensional data into a simplified, two-dimensional representation, often
referred to as a map or grid (Ritter and Kohonen, 1989). For the purpose
of driver identification, the shape of the SOM used is (16, 1). Each neuron in
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the SOM is responsible for recognizing a cluster representing one driver. The
training of the SOMs consisting of 250,000 iterations was conducted using
specific hyperparameters chosen to achieve optimal results. The parameters
include a sigma of 0.7, a learning rate of 0.25, and a neighbourhood function
set to ‘Gaussian’.

In order to transparently evaluate the models used for USID concept, var-
ious external evaluation metrics are used to compare real driver ID with
assigned values output by classification models. These vary from pair count-
ing metrics, entropy-based metrics, and set-matching-based metrics. Three
pair counting metrics were used for evaluation, rand index, adjusted rand
index, and Fowlkes-Mallows index. The entropy-based metric used in this
research is normalized mutual information (NMI), and it represents the sim-
ilarity of clusters by measuring how much information is shared between
the clusterings. The last used metric is purity which quantifies the degree of
homogeneity in the clusters, without investigating their relationship.

Compared evaluation based on thementioned criteria is shown in Figure 2.
The rand index and adjusted rand index vary from −1 to 1. Other metrics
range from 0 to 1, with 1 denoting the highest achievable quality and the
proximity to 0 indicating a decrease in each model’s quality. The results from
the figure show that the driver can be successfully identified with unsuper-
visedMLmodels and promises the success of the USID concept. The two best
models on this dataset turned out to be the k-means clustering and SOM,
slightly ahead of DBSCAN. They dominate in every metric, except the purity
of the clusters, where autoencoders are on the top. Regardless of their purity,
the autoencoders didn’t show great results in other metrics.

Figure 2: Comparation of performance of different unsupervised ML models used for
USID.
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EXPERIMENTAL ANALYSIS

The goal of the USID is to identify the driver with the data available already
in vehicles. The main feature is its capability to assign the driver ID to the
group of data, later interpreted as a driver identification, without using the
label of the driver. Additionally, the concept is expendable to the any number
of new drivers seamlessly without requiring new labeled data to be fed to the
model, due to its unsupervised characteristics.

In order to do the quantification of the concept, besides the evaluation of
the models shown previously, the authors have done the experimental analy-
sis. For this purpose, the USID confidence coefficient (Ucc) is proposed. The
USID confidence coefficient represents how confident the model is, varying
from 0 to 1, in detecting the right driver during the driving cycle, see Equa-
tion 1. The equation represents the dependency of the coefficient from the
OBD II data index xd during the driving cycle. On the left side, the vari-
able xs is number of data indexes for which each driver has been successfully
identified so far. The constant x∗d is the specific data index after which theUcc

gains relevance. The x∗d is to be selected according to the requirements of the
comfort function used with USID, more specifically it defines how flexible
the comfort function is towards the driver identification error. The filtering
based on a first order system was used for the first x∗d OBD II data indexes,
explaining the right part of the equation. This was done to remove false confi-
dence information at the beginning due to the low total number of messages
processed, rendering every driver ID decision before x∗d useless. The USID
confidence coefficient is specially designed for use in comfort functions since
the variable can be differently interpreted with various comfort functions.
Comfort functions like ride comfort require a high degree of confidence in
driver identification to apply their functionalities and not as early, while only
a medium level of identification is needed in most thermal comfort functions
at the start of the driving cycle.
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−
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)
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The experiment is done in such a way that the OBD II data stream from
the driving cycles of each driver is inserted into the USID, and the change in
Ucc is calculated. The SOM is used as the unsupervised model of USID in
the experiment, and the value for x∗d is picked 20. In this specific case, the
frequency of data is 1Hz, and therefore x-axis can be represented as time in
seconds with the same labels. The results show the variance of the confidence
coefficient for each driver during the time of driving cycle is in the range from
medium to high, see Figure 3. The Ucc for majority of drivers is in the range
of 0.7 to 0.9, showing the very good confidence of models in detecting the
driver and success of USID, even during the early stages of the driving cycle.
Outside of this range are the perfect confidence in driver ID6 identification,
and the lower confidence of drivers ID9 and ID16 between 0.4 and 0.6 after
the 200th data index.
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Figure 3: Results of experimental analysis.

CONCLUSION

This paper proposes the USID concept, which deals with the identification
of the driver using unsupervised ML techniques, for the purpose of com-
fort functions. The architecture of the USID is shown in detail. The proposed
USID seems suited to adapt to changes in driver behaviour over time, making
it a more versatile approach for long-term driver identification. By not requir-
ing labeled data, it simplifies data collection and model training, marking it a
practical choice for applications such as comfort functions. These advantages
position USID as a promising solution for driver identification in pursuing
personalized comfort functions in vehicles.

The results revealed success in the evaluation of USID, with an OBD II
dataset of 16 different drivers in one vehicle. Different models were used
to validate the concept, where the best results gave k-means and SOM,
ahead of DBSCAN and autoencoder models. Covering the 16-driver scenario
proposed, the USID with SOM proved capable of coping with the driver
identification requirements for comfort functions. The introduced USID con-
fidence coefficient of the driver showed very good overall confidence of the
predicted driver during the driving cycles of each driver. The findings outlined
suggest that the practical implementation of the USID concept in identifying
multiple drivers through unsupervised machine learning models with a high
level of confidence is achievable.
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