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ABSTRACT

This paper presents a novel approach to testing SLFs (SLFs) in adaptive systems
using metamorphic testing (MT). Recognizing the challenge of verifying software that
learns from and adapts to user behavior without a definitive oracle, we propose
specific metamorphic relations (MRs) as the basis for our testing framework. These
MRs are crafted to evaluate the SLFs’ capacity to tailor user experiences by adapt-
ing to individual behaviors, transitioning user patterns and environmental changes,
and managing data anomalies. We demonstrate our testing methodology through a
two-stage process, utilizing synthetic data generated by the CAGEN∗ tool to simulate
realistic user interactions and environmental factors. Principal component analysis
(PCA) is employed to visualize the effectiveness of SLFs in adhering to the iden-
tified MRs. Our findings highlight proficiency in personalization by differentiating
between user behaviors. The paper emphasizes the effectiveness of MT in enhancing
the development of intelligent, user-centric systems and suggests directions for future
research to extend these testing methods to more complex scenarios and diverse SLF
architectures.
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INTRODUCTION AND MOTIVATION

The field of SLFs is a dynamic facet of modern technology with an increasing
presence in various applications (Goodfellow et al., 2016). SLFs utilize data-
driven methods such as supervised, unsupervised, and reinforcement learning
(Li 2018). In the automotive domain, SLFs are relevant for real-time decision-
making, as they adapt to dynamic scenarios by collecting extensive data
from sensors. Likewise, SLFs with user interaction assert their influence in
the automotive industry, as they observe driver behavior and recognize user-
specific interactions with the system. Beyond simply processing data, these
functions proactively interact with user inputs, adapting to individual pref-
erences in features like seat heating or gesture control (Stang et al., 2022) to
enhance the overall driving experience. The growing integration and interac-
tion of SLFs (Bertolini et al., 2021) underscore the importance of conducting
research and refining testing methodologies to ensure their reliability and
effectiveness.

∗COntext and ACtion GENeration – tool for the generation of synthetic datasets.
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Effective test methods for validating SLFs with user interaction are neces-
sary to meet the increasing demand for trustworthy and reliable SLFs. Tradi-
tional software testing strategies (Ammann and Offutt, 2016) are inadequate
for these functions, as they must contend with unpredictability resulting from
their adaptive nature and the diversity of user behaviors. Conventional test
cases with fixed specifications cannot predict or verify the behavior of these
adaptive algorithms. Adding to the testing challenge, every user introduces
unique actions, and traditional approaches fail to capture the vast array of
potential interactions. As SLFs continuously evolve with each user, new test-
ing methodologies must adapt to the functions. This paper presents a solution
to address the test-oracle problem by leveraging metamorphic testing (Chen
et al., 2019) to validate SLFs with user interaction. Metamorphic testing
approaches the test oracle problem from a perspective not typically employed
by other testing strategies. Instead of focusing on individual test cases, meta-
morphic tests examine the outcomes of multiple test cases within a testing
system and their relationships with each other. Any deviation from these rela-
tionships in the function’s responses indicates a fault. The detection efficiency
of this method depends on the formulation and understanding of these rela-
tionships, making it a creative and critical task for testers. The subsequent
sections will define SLFs, elaborate on their characteristics, and demonstrate
the application of metamorphic testing to ensure their reliability and adapt-
ability. By adopting this innovative approach, we enhance testability to create
more robust and precise SLFs, especially those involving user interactions.

SLFS WITH USER INTERACTIONS

This paper presents a method for validating SLFs that involve user interac-
tions. Firstly, the term and the characteristic properties of SLFs are defined,
followed by a validation of SLFs that adapt to user interactions.
Definition: SLFs (SLF): A SLF is defined as the end product of a machine

learning process (Carbonell et al., 1983), which can independently learn and
adapt its behavior through the analysis of data or the observation of its
performance.

The properties of SLFs are characterized by (Russell and Norvig 2010)

1. Data-Driven Learning: SLFs rely on data-driven learning techniques such
as supervised, unsupervised, and reinforcement learning. This method
enables the system to learn and gain insights based on data sets.

2. Adaptability: The primary trait of a SLF is its ability to adapt and evolve
based on new data or experiences. As more data is ingested, the function
refines its internal parameters to improve performance.

3. Optimization: At their core, SLFs involve optimization processes, adapt-
ing parameters to find the best solution to a given problem based on the
available data.

4. Generalization: SLFs are trained on specific data sets but aim to generalize
their learning process to achieve results on unseen data.

Generalization refers to the ability to make accurate predictions on
new, previously unseen examples that were not part of the training or
validation datasets.
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A specialized subset of SLFs focuses on interaction with the user. These
functions do not exclusively learn from data but instead adapt to the user’s
behavior and preferences and adapt accordingly.
Definition: SLFs with user interactions are algorithms designed to cus-

tomize operations by actively learning from user engagements. SLFs go
beyond data processing and adapt to the individual preferences and behavior
of the user.

SLFs with use interactions have the following characteristics in addition to
the mentioned properties of SLFs:

1. User-Centric Adaptation: These functions continually refine their output
based on direct or indirect feedback from users. They adapt to individual
user preferences and needs, making their responses more tailored over
time.

2. Online Learning: These functions can continuously learn and update
their model as new data becomes available rather than waiting for batch
updates. This continuous adaptation allows the system to remain current
with the most recent user interactions.

3. Evolution Over Time: As user behavior, preferences, and context change
over time, these features adapt in the short term and evolve to ensure
long-term adaptation to user needs and behavior.

4. Comfort and Convenience: SLFs with user interactions strive to improve
user comfort and convenience by automating personalized actions and
preferences for a seamless, user-centric experience.

In addition to the previously discussed features of SLFs with and without
user interactions, it is important to consider differences in the training meth-
ods. These methods can be broadly divided into two categories, as outlined by
(Ben-David et al., 1997): offline learning, which involves training SLFs with-
out direct user interactions, and online learning, where SLFs continuously
gather knowledge through ongoing user interactions (Figure 1).

Figure 1: Comparison of offline learning with fixed labels and online learning with
scenario data and user interactions.

In Offline Learning, SLFs are trained using a static dataset with specific
labels. These labels instruct the SLF during its training phase. Once training
is complete, the SLF can identify or categorize new, unseen data when it is
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used for practical applications. The dataset used during training is crucial as
it forms the base knowledge that the SLF uses to make predictions about new
data.

In contrast, Online Learning is a more dynamic and continuously adaptive
approach. Instead of relying on pre-assigned labels, it learns from ongoing
user interactions, which provide feedback. This learning process is shaped
by real-time scenarios, which are constantly changing. As a result, the SLF
continually updates its understanding and predictions based on the latest
user feedback and the interaction context. This method allows the SLF to
constantly improve and adjust its responses to suit the current situation and
user needs. Offline learning sets a solid foundation for SLFs to make future
predictions, while Online Learning emphasizes adaptability, with the SLF
constantly learning and adjusting to new information and user interactions
as they happen.

TRADITIONAL TESTING METHODOLOGY

In software quality assurance, developing testing strategies is of central
importance for managing the intricate challenges of software development.
Within this spectrum, requirement-based testing (Castro et al., 2001) is recog-
nized as a principal and historically entrenched methodology. This approach
is predicated on the essential notion that software must conform to its
predetermined specifications. It underscores a thorough validation directly
anchored to the documented requirements. Among the various techniques
employed within requirement-based testing is the V-Model (Bröhl, 1993),
which serves as a structured and sequential development methodology. This
model stands out for its distinctive feature of mirroring the development
stages (requirements definition, system design, etc.) with corresponding test-
ing phases (system testing, acceptance testing, etc.) on the opposite arm of
the ‘V’, thereby integrating development and testing efforts in a cohesive
and parallel manner. This methodological testing framework incorporates
a suite of specific testing practices, such as unit testing, which focuses on
the minor parts of the code; integration testing, which evaluates the inter-
actions between different code segments; regression testing, which ensures
that recent changes do not disrupt existing features; and scenario-based test-
ing, which examines software performance under hypothetical use cases. At
its core, requirement-based testing (Hetzel 1988), particularly when imple-
menting the V-Model, revolves around the question, “Does the software
perform its intended functions?” It involves crafting test cases that directly
correspond with the software’s documented requirements, thus guaranteeing
that the application meets its delineated functional and performance criteria.
The alignment of the test cases with the software requirements is crucial for
checking whether the software fulfills the promised functions.

Figure 2: Traditional workflow of requirement-based testing.
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In the V-model of software testing, a crucial part of the structured approach
(Ammann and Offutt, 2016) shown in Figure 2, the process starts with test
engineers conducting a detailed study of what the software is expected to do.
They meticulously examine the list of software requirements to comprehend
them fully. Following this, test engineers develop specific test cases tailored
to these requirements. Each test case is constructed to verify whether the
software functions in alignment with its expected behavior. Once the test
cases are prepared, the actual testing phase begins. Test engineers run the
software and closely observe whether it performs as intended. After the test-
ing, test engineers assess the results. They scrutinize whether the software
fulfills the initial requirements. These issues are recorded if there are any devi-
ations or if the software fails to perform as required. This feedback is crucial
as it enhances the software, ensuring it meets the established standards and
functions correctly.

LIMITATIONS OF TRADITIONAL TESTING METHODS FOR SLF

SLFs continuously adapt and evolve by responding to incoming user interac-
tions and data from their environment. Therefore, they do not exhibit static
behavior that is identical for every user but is dynamically shaped, depen-
dent on the individual user and scenario. The validation of SLFs through
traditional software testing methods based on requirement-based approaches
faces challenges when dealing with the unique characteristics of SLFs. These
challenges include (Koopman and Wagner, 2016; Bach et al., 2017):

1. Dynamic Behaviour versus Static Requirements: Traditional requirements-
based testing is based on the idea that software actions are consistent and
determined by a fixed set of specifications. However, SLFs are inherently
dynamic and designed to modify their behavior in response to new infor-
mation. Therefore, a test scenario that passes today may not necessarily
pass tomorrow, not due to a defect, but because the SLF has updated its
behavior based on its learning process.

2. Infinite Scenarios: Requirement-based methods often define a limited set
of test scenarios based on documented requirements. With SLFs, espe-
cially in real-time learning contexts, the potential range of inputs and
scenarios is vast, if not infinite. Each user interaction introduces its unique
behavior, context, and sequence of actions, making it nearly impossible
to anticipate and document every potential scenario.

3. Context Sensitivity: User interactions with systems are not isolated events.
They are set in a specific context that includes factors outside the imme-
diate interaction, such as the user’s mood, previous interactions, location,
and time of day. These external factors can significantly influence the
user’s input and expectations of the system’s results. Traditional testing
methods that evaluate functionality in isolation overlook these contextual
features, potentially missing key interaction patterns or user expectations.

STATE OF THE ART OF METAMORPHIC TESTING

With their dynamic and evolving nature, SLFs pose significant challenges to
traditional requirement-based testing methods. These conventional methods
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falter in the face of the inherent dynamics of systems that adapt and grow
based on continuous learning from data. Metamorphic testing (MT), a
property-based testing approach, offers a more robust solution to these chal-
lenges. Unlike traditional methods that focus on predefined expected outputs
for specific inputs, MT is based on the inherent properties and invariants of
the system, defined as metamorphic relations (MR). In contrast to contract-
based testing (Guissouma et al.), where a system’s specific expected output
behavior under various conditions is defined, MRs determine how a set of
outputs should change in response to modifications in the input. MRs offer
an advantage over contract-based testing for test cases where a test ora-
cle, a definitive source for assessing output correctness, is either unavailable
or impractical. Initially, MRs were primarily perceived as simple transfor-
mation properties, like “the rotating of an image should not change the
classification”. Such relationships become the basis for MT. However, as
the MT approach matured, the community started recognizing the versatility
and depth of MRs. They are not limited to simple transformations but can
encompass more complex relationships like those found in machine learn-
ing, where data perturbations should not radically change predictions. Over
time, research (Chen et al., 2019) has emphasized the importance of identify-
ing “useful”and “effective”MRs. An effective MR should have the following
characteristics (Segura et al., 2016):

• Relevance: MRs should be directly associated with the software’s func-
tionality and the domain of its application.

• Fault revelation: MRs should be sensitive to faults, meaning that if there
is a fault in the software, violating the MR should be probable.

• Independence: The MRs selected should be independent of each other to
maximize fault detection. Overlapping or redundant MRs might lead to
wasted testing effort without additional fault revelation.

IDENTIFICATION OF USER-SPECIFIC METAMORPHIC RELATIONS

This section examines the properties of SLFs concerning user interactions,
leading to the formulation of relevant metamorphic relationships. The impor-
tance of determining these properties cannot be overestimated, as they serve
as the basis for a differentiated analysis of the system under test (SuT). This
analysis aims to evaluate the responsiveness and adaptability.

Ensuring Distinctiveness: The ability to differentiate is essential because it
enables the SuT to offer personalized interactions and services. Each user
of the SLF may have unique preferences, habits, and needs that the SuT
should recognize and automatically consider. This testing property can verify
whether the SLF can differentiate between users with different behaviors and
extract individual routines for each user. The characteristic of “Ensuring Dis-
tinctiveness” can be divided into the following sub-aspects: On the one hand,
it includes learning different user behaviors (MR 1.1), and on the other hand,
it involves assigning the known patterns to a specific user (MR 1.2).

Recognizing the Transition of User Behavior: A dynamic user environ-
ment requires the SuT to recognize changes in user behavior. This property
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encompasses two pivotal elements: assimilation of novel behavioral patterns
and discontinuation of established ones. The former relates to the system’s
prowess in identifying and accommodating new user behaviors (MR 2.1),
while the latter deals with its competency in phasing out behaviors that are
no longer exhibited by the user (MR 2.2). These elements ensure that the
system remains in sync with evolving user interactions.

Adapting to Environmental Shifts: While some behavioral transitions
emanate directly from the user, others are precipitated by external environ-
mental changes. Such external factors invariably influence user behavior,
necessitating alterations in the system’s routines. This property is segmented
into three key facets: adjusting to time variations (MR 3.1), acknowledg-
ing seasonal transitions and adjusting system behavior accordingly, such
as modulation of temperature controls in tandem with climatic changes
(MR 3.2), and discerning the user’s directional intent, leading to pertinent
recommendations and adjustments during their journey (MR 3.3).

Upholding Robustness and Detecting Outliers: Central to the efficacy of
these functions is their robustness - their ability to counteract inaccuracies
and disruptions, particularly from sensor-induced perturbations. Since sen-
sor data can be adulterated with noise, the algorithm’s resilience in sifting
through this noise to procure accurate data is paramount (MR 4.1). Further-
more, in the vast sea of data, outliers - data points that deviate markedly
from the anticipated distribution - can emerge. A proficient SLF identifies
these outliers and devises strategies to mitigate their potential distortions,
ensuring the model’s integrity and accuracy (MR 4.2).

Table 1. Summary of test properties and corresponding metamorphic relations.

Properties Metamorphic Relation ID

Ensuring Distinctiveness Adapt to multiple user behaviors MR 1.1
Differentiate between users MR 1.2

Recognizing the Transition
of User Behavior

Adding new behavior user patterns MR 2.1
Removing known behavior user patterns MR 2.2

Adapting to Environmental
Shifts

Modification of the time characteristic MR 3.1
Recognition of seasonal effects MR 3.2
Recognition of the direction of travel MR 3.3

Upholding Robustness and
Detecting Outliers

Functionality with measurement noise MR 4.1
Ignore outliers MR 4.2

IN-DEPTH DESCRIPTION OF TESTSETUP FOR MR 2.1

According to the MR definition, a suitable testing strategy for assessing
compliance or non-compliance with metamorphic relationships is evaluated.
Figure 3 illustrates the two testing stages: the source test case and the follow-
up test case. The outputs of these test cases are employed to assess the
differentiation capabilities of two distinct SLFs. The investigation focuses
on two SLFs engineered to absorb and process information based on user
interactions. These SLFs were developed to capture user behavior patterns
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systematically but require an in-advance identification of the user as an input
feature, as proposed by Vučinić et al. (Vučinić, 2023).

We establish a Source Test Case as the reference point for the founda-
tional assessment. This scenario records the baseline behavior, represented
by Person A navigating through a simulation involving interactions with two
different user interactions (UIs), such as opening a window or adjusting the
heating system.

Figure 3: Illustration of the testsetup, consisting of source testcase and follow-up
testcase 1.

The follow-up Test Case 1 is a variation of the Source Test Case: Contrary
to it, the two UIs are executed by two individuals, not by one, as in the Source
Test Case. The Metamorphic Relation MR 1.2 mandates that if Person A is
driving, the follow-up UI 1 cluster must be identical to the Source UI 1 Cluster.
The MR is validated by comparing the Source Output and the SLF Output
of the Follow-Up data set.

In Figure 3, this comparison reveals that SLF Version A satisfies MR 1.2,
as the output from SLF Version A is identical to that of the Source Test Case,
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even though MR1.2 proclaims a difference. In contrast, SLF Version B shows
the behavior described in MR1.2 and successfully satisfies the metamorphic
test.

Figure 4: Follow-up Testcase 2 with interchanged user interactions.

Subsequently, Follow-up Test Case 2 (Figure 4) modifies Test Case 1 by
swapping the UI responsibilities between the two individuals, assigning Per-
son A to UI 1 and Person B to UI 2. The MR insists on consistency; if Person
B is the driver, then the output of UI 2 in the follow-up should match the UI
2 output in the Source Test Case. Upon reviewing Figure 4, it is evident that
SLF Version A’s performance does not adhere to the prescribed MR, while
SLF Version B exhibits shows compliance with MR 1.2

PROTOTYPICAL IMPLEMENTATION

The previously described test setup was evaluated using synthetically gener-
ated data with CAGEN (Stang et al., 2021). The metamorphic test case was
devised for a comfort feature: a seat heating function with various intensity
levels (Levels 1-2). In the specific case of the seat heating function, UI 1 and
UI 2 correspond to the labels Seat Heating 1 and 2, respectively. The grey
cluster aggregates the data points where the seat heating was not activated
and is not shown in Figure 3 and Figure 4. To improve mapping, the numbers
in Figure 5 correspond to those from Figure 3 and Figure 4.
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The original model outputs for the source test case are depicted in a scatter
plot matrix, illustrating the principal component analysis (PCA) projections,
particularly the first two principal components. PC1 is the direction in a
dataset that captures the maximum variance, representing the most signif-
icant pattern of data variation. PC2 is the second most significant direction,
orthogonal to PC1, capturing the next highest level of variance in the data.
The validation compares the PCA visualizations of the Source Test Case (1)
against the Follow-Up Test Cases for SL Versions A and B (2,3,4,5). For the
Validation of SLF Version A, comparing the Source Test Case (1) with the
output of Test Case 1 (2) and Test Case 2 (4) reveals that SLF Version A does
not adapt to different individuals according to MR1. 2, which proclaims, if
only one person is driving there should be only one cluster. Instead, the SLF
continues to associate both clusters and their behaviors to one single user.

In contrast, SLF Version B learned to recognize that the UI is operated
by different individuals. This property can be observed by comparing the
Source Test Case (1) with the output of Test Case 1 (3) and Test Case 2
(5). Only one cluster is discernible in (3) and (5), which also partly cor-
responds with the Source Test Case. However, it should be noted that the
cluster from Seat Heating Lvl 1 in (3) does not entirely match the cluster from
Seat Heating Lvl 1 in (1). The reason for this discrepancy warrants further
investigation.

Figure 5: Output analysis for a self-learning seat heating function.
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CONCLUSION

This paper presents an approach to evaluate SLFs with user interactions
by utilizing metamorphic testing. Our methodology used the CAGEN tool
to generate synthetic data, enabling the creation of precise and controlled
test scenarios that mirror real-world scenarios. The results showcased the
effectiveness of MRs in distinguishing the performance of different SLFs.
We observed the SLFs’ capabilities to adapt to user-specific interactions and
discern and adjust to changing environmental factors. Notably, in individ-
ualization, SLF Version B surpassed SLF Version A, displaying enhanced
personalization following the conditions of MR 1.2. The study underlines
the promise of metamorphic testing as a critical resource for improving
SLFs, confirming their effectiveness, and identifying further development
opportunities.

In conclusion, metamorphic testing in the context of SLFs, with a specific
emphasis on user interactions, emerges as a promising and efficient strat-
egy. For the future, we are advocating extending this testing method to a
broader range of scenarios and SLF models to strengthen the resilience and
adaptability of these systems.
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