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ABSTRACT

Our paper presents an approach to automatically detect and transcribe basic human
motions in VR by means of the Methods-Time Measurement (MTM) system. MTM is a
predetermined motion time system that consists of a list of predefined basic motions
and the mean time values corresponding to those motions. This system is used to
analyze manual workplaces. Currently, the MTM analysis is conducted manually. The
working process that needs to be analyzed is video captured and further analyzed by
dividing it into a sequence of basic MTM motions. There are various MTM systems that
differ by their granularity level, such as MTM-1, MTM-2, MTM-UAS, etc. We propose
and evaluate an approach of the automatic transcription of the MTM-1 basic motions.
For our research, we use Unity software to create the virtual environment (VE) and
interactions within it. Additionally, we use the HTC Vive tracking system and Sensoryx
VRfree data glove that enable body- and hand-tracking. Our automatic transcription
algorithm employs four decision trees that run simultaneously, each dedicated to tran-
scribing hand, arm, body, and leg motions in real time. To assess our algorithm, we
conducted a user study with 33 participants.

Keywords: Virtual reality, Methods-time measurement, Motion recognition, Process
optimization

INTRODUCTION

Due to the increased availability of Virtual Reality (VR) technologies, they
become more popular in industrial settings. This is driven by the increasing
digitalization in industry, recently boosted by the “Industry 4.0” initiatives.
With this, new approaches such as using different variations of digital twins
(Jones, 2020) appear, that were not used previously in the industry.

For these digital twins, VR serves as a great visualization tool, since the
spatial representation of objects significantly increases the sense of presence
and immersion in comparison to the normal screen (Shu, 2019). Additionally,
it enables intuitive interactions with the virtual objects, as well as easy track-
ing data acquisition. Therefore, VR is predestined for assessment purposes,
such as the evaluation of workplaces. Measuring the movements of a person
at a virtual workplace could help to optimize its layout prior to the physical
implementation.
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Methods-Time Measurement

Methods-Time Measurement (MTM) is a predetermined motion time system
used to analyze manual processes. It was first introduced by L.H. Maynard
& L.B. Stegemerten (Maynard, 1948). The MTM system analyses human
motions by dividing them into a sequence of so-called basic motions, that
are defined in this system. Every basic motion had a predetermined time
value. Those time values are measured in so-called Time Measurement Units
(TMUs).

There are various MTM systems, which differ by their granularity level.
MTM-1 is considered to be the most detailed system, followed by the
MTM-2, MTU-UAS, and MTM-MEK systems. Table 1 presents the list
of categorized basic MTM-1 motions. The disadvantage of more detailed
systems is the time and effort to perform MTM analysis.

Table 1. List of MTM-1 basic motions.

Upper Body | Arm Motions | Reach Move Crank Turn
Motions Hand Motions | Grasp Position  Disengage Release Apply
pressure
Lower Body | Body Motions | Sit Bend Kneel one knee Kneel both knees
Motions Leg gestures Step Side step  Turn step Leg motion Foot
Eye Motions Eye focus Eye travel motion

All MTM systems suffer from either requiring an already existing work-
place, or a mock-up of it resembled by cardboard. A worker’s movements are
then video recorded and manually analyzed by multiple MTM experts, which
is a time-consuming and error-prone process. Consequentially, automating
this analysis will reduce effort and costs.

The most common use case for MTM systems is the ergonomics improve-
ment of the workplace (Laring, 2002). Additionally, MTM can be used for
the process planning (Morlock, 2017), as well as training progress tracking
(Muller, 2016).

RELATED WORK

One of the possible approaches suggests using additional sensors and RFID
tags (Fantoni, 2020). However, their method measures times at certain
positions instead of detecting basic motions. Another research proposes an
approach utilizing a single camera with the convolutional neural network
to detect MTM-1 hand motions (Riedel, 2021). Due to the limited field of
view of the employed camera, their work detects hand motions only, while
all other body movements are not evaluated. Both works have in common
that the users’ actions were only performed in real environments.

Previous research (Gorobets, 2021) confirms the feasibility of conducting
an MTM analysis in VR. It compares results obtained by a direct motion
observation and MTM-2 analysis in identical setups in VR and reality. It
concludes that TMU times obtained from MTM-2 analysis in VR correspond
to the values obtained by conducting MTM-2 analysis in reality.
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Some researchers (Bellarbi, 2019; Andreopoulos, 2022) proposed their
approaches to detect MTM-2 basic motions in VR. However, automatic tran-
scription of the MTM-1 basic motions in VR has not yet been investigated.

Research Gap

In our research, we concentrate on enhancing the virtual MTM-1 by intro-
ducing an automatic transcription approach. This approach is beneficial for
non-existing workplaces, as it allows to avoid building a physical workplace
or mock-up of it, but utilizes its virtual model instead.

METHODOLOGY
Setup

Hardware: To visualize an interactable virtual environment (VE), we used
the HTC Vive Pro system. It consists of one head-mounted display (HMD),
three trackers, and two base stations. To track hand gestures, we used the
VRfree data gloves provided by Sensoryx. This system consists of a head
module that is attached to the HMD and the data gloves. A head module
tracks the wrist position. To track finger positions, inertial measurement units
(IMUs) in the gloves are used. For tracking participants’ motions we used the
setup described as follows. Head motions are tracked using the HTC Vive
Pro HMD. Hand motions are tracked with the VRfree glove. Lower body
motions are tracked with three HTC Vive Trackers: one placed on the hip of
the user and two placed on the feet.

Software: For creating the VE and interactions within, we use Unity
3D version 2021.3.13f1. Additionally, we use the Sensoryx SDK to enable
integration of the VRfree gloves in Unity 3D. To create a realistic human
avatar, we use the Make Human modelling software. Additionally, we use the
VRIK Unity asset that animates the avatar based on the inversed kinematics
principle.

VE design: The virtual workplace consists of several objects on a table that
need to be grasped, assembled, and placed again back on the table, while the
user is seated. The workplace integrated also other motions like cranking and
foot motion. Other areas of the workplace also required step motions and
kneeling. Due to the lack of an eye tracker and the low TMU contribution of
eye movements, we did not integrate this MTM-1 class into our evaluation
procedure. The overall layout for the seated operations is shown in Fig. 1.

Experiment design: To test that our algorithm transcribes possible MTM-
1 motions, we developed a VE that has various tasks to perform. For this, we
split up the study tasks into two groups: actions preformed while the users
were seated, and actions preformed while the users in a standing position.
The seated area aims to concentrate on the upper body motions and foot
motions, while the standing position aims to automatically recognize other
actions like step and kneel.

User study procedure: The user study starts with a brief introduction of
the experiment goals. It is followed by the task explanation as well as famil-
iarization with the VR equipment. Lastly, a participant completes the task
in VR.
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Figure 1: VE design, seated area. The cube represents a chair that participants are
sitting on.

Automatic Transcription

To deliver the MTM-1 basic motions from the motions sequence performed
by a user, we decided to use a decision-tree approach. The benefit in compar-
ison to machine learning is that it does not require preliminary training of the
network. Moreover, the decision tree approach is highly advantageous in the
context of MTM-1 motions, considering to the pre-defined nature of these
movements. Additionally, in VR initial information about the environment
and virtual objects is available, and it reduces the complexity associated with
detecting motions.

Our decision-tree approach consists of four decision trees that run simul-
taneously for (i) arm motions, (ii) hand motions, (iii) body motions, and (iv)
leg gestures. Each of them transcribes one subgroup of the MTM-1 basic
motions (see Table 1). Below, we will describe the working principle of each
of them.

Upper Body Motions Recognition

This part consists of two decision trees: one for hand motions and one for
arm motions.

The hand motions decision tree is triggered when an object has been
grasped or released. Therefore, the trigger for the start of the hand motion
decision tree is the beginning or end of touching a virtual object. Every
moment of time, our algorithm checks whether a virtual object was touched
or not. We observed that hand motions appear in the following sequence (see
Fig. 2).

The arm motions decision tree is triggered by the end of the Grasp or
Release hand motion. As arm motions precede hand motions, we use the
pre-recorded tracking information in order to deliver correct transcription.
Firstly, we check whether the hand action that triggered this decision tree
is Release. If yes, then a preceding arm motion is either Crank, or Move. If
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the released virtual object had a label crank, we transcribe performed arm
motion as Crank. If it was a different object, we transcribe Move motion. If
the hand action that triggered the arm decision tree was not Release, it means
that it was triggered by the transcribed hand motion Grasp. Therefore, the
preceding arm motion was Reach.

Move

Grasp [——— Disengage |

Position ——— Apply pressure ———  Release

Reach |

Figure 2: Hand motions cycle in MTM-1. The dashed motions are optional in a cycle.
The names on the arrows represent the arm motions that make a transition between
corresponding hand motions.

The Turn motion does not intuitively fit into the arm motions category.
Its definition is the turning of the wrist during a reach or move motion. As
Turn motion is always performed during Reach or Move arm motions, we
integrated it into the arm motion decision tree, as it cannot be considered as
an independent hand motion.

Lower Body Motions Recognition

This part consists of two decision trees: one for general body motions and
one for leg gestures.

The body motions decision tree is triggered when a head position (b, ) is
lower than the predefined threshold Tjy,, 4. Similarly to the hand motions, we
observed the sequential nature of the body motions (see Figure 3). Starting
from the neutral standing position, lowering the head identifies the begin-
ning of the Bending motion. Additionally, if the hip position is also getting
below a threshold value Tyg;;, we are transcribing the performed action as Sit.
To transcribe Kneeling motions, we are considering the relative angle (¢ f,;)
between the trackers that are located on the feet and the floor. After detection
of one of the above-mentioned motions, participants return to their neutral
standing position by performing an Arise motion. Arise motion is detected
using the hpe5q and Tayise threshold: Tayise < bpead s Tend < Tarise-

. hhead . hhip Kneeling | “reet | Kneeling
Standing —— Bending S S
5 one knee both knees

Rhead | :

Figure 3: Body motions. The body motions are sequential and tracker metrics are used
to detect the motions.



Automatic Transcription of the Methods-Time Measurement MTM-1 Motions in VR 255

Threshold definition:
The thresholds Tp,,; and Ts;; were defined empirically and are both 20 cm
lower than the height of the head and hips in the neutral Standing position:

TBend = bhead,standing -20 cm, Tg;; = hhip,standing - 20 cm.

The threshold for kneeling angle Tx,,..; is also obtained empirically and
1s 50°.

The Tayise threshold should be set below hjeu4 standing to ensure it is
achieved, and above Tpg,,; to avoid multiple detection of a Bending motion.
Empirically we set T 4,5 threshold at the midpoint between these two values:

T arise = hhead,standing - 10 cm.

Leg gestures consist of two subgroups: different Step variations and Foot
and Leg motions. An example of the second subgroup is pressing a pedal.
These two subgroups can be very similar and traditionally are differentiated
by the estimate of the MTM expert. Due to this similarity, we decided to
distinguish between those two subgroups by making an assumption that Foot
and Leg motions happen only while seated.

The Leg gesture decision tree operates continuously throughout the entire
algorithm’s runtime, without being reliant on specific triggering events. It
uses velocity of the foot (vg,,) to detect leg gestures.

Figure 4 depicts the logic of the hysteresis loop for the detection of the
foot moving to avoid false Leg gesture detection. We empirically define two
thresholds for v,g,:

« Tj, defines the start of the leg gesture;
o Tout defines the end of the leg gesture.

Fool moving

True --f-----=—- Ufoot

False -- e

Figure 4: Hysteresis for detecting leg gestures.

These thresholds are used to filter out the noise caused by the tracking sys-
tem. As it is common for hysteresis loops, these thresholds should be clearly
separated (Toue < Tin) to avoid repeated detection of the same leg gesture.
When the vg,, rises, it follows the lower path. If it exceeds Ti,, the foot is
considered to be moving. If, after that, v¢,, lowers again, it follows the upper
path, and if it drops below Ty, the foot stopped moving, and we consider it
as the end of the leg gesture.
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Threshold definition: We define Tj, and Ty separately for detecting Step
(Tin,step> Tout,step) and Foot and Leg motions (T oorflegs Tout,foot/leg)- FHOW-
ever, we use the same procedure to define the thresholds for both subgroups.
We record and analyse the velocity of the foot of a test user performing either
Step or Foot or Leg motions.

Figure 5 illustrates the test user’s foot velocity performing three steps over
time. Based on our empirical analysis, we define two thresholds for detecting
Step motions: Tiy seep = 0.3 m/s, Tougstep = 0.05 m/s. Similarly, we define the
Foot and Leg motion thresholds: Ti, footleg = 0-1 m/s, Toye footieg = 0-05 m/s.

velocity [m/s)

time [1/30 5]

Figure 5: Velocity of the foot of a test user performing 3 steps over time.

Therefore, the leg gestures decision tree has the following logic. Firstly, we
check whether a motion is performed seated or upright. If the motion was
performed upright and we detect a foot moving, we transcribe one of the
Step motions. If the foot’s turning angle along the floor is between 45° and
90°, Turn Step is transcribed. Otherwise, if the foot travels less than 60%
in the forward direction of the foot, it is considered a Side Step, and if not,
normal Step is transcribed.

If the motion was performed seated and we detect a foot moving, we
transcribe either Foot or Leg Motion. A Leg Motion is transcribed if the
disposition of the feet is above 10cm, and a Foot Motion if it is below.

RESULTS AND DISCUSSION

To assess the results received by the proposed algorithm, we are using the
following metrics. Firstly, every automatically delivered basic motion was
labeled as True Positive (TP), False Positive (FP), or False Negative (FN).
Positive stands for a transcribed motion and negative for the absence of
a transcription. True stands for the correctly recognized motion by the
algorithm and false for the incorrect recognition. Therefore:

« TP - The algorithm correctly transcribed a motion that was performed by
the user.

« FP - The algorithm transcribed a motion that was not performed by the
user.

« FEN - The algorithm did not transcribe a motion even though the user
performed one.
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Based on those metrics, we additionally introduce Precision and Recall:

_ TP pecall= 2P (1)
ZFP 4+ XTP XFN + XTP

Precision is the ratio of true positive results to the total number of positive
results. It measures the accuracy of the algorithm in identifying true positives.
Recall is the ratio of true positive results to the total number of relevant
results. It measures the completeness of the model in identifying all relevant
results.

Precision =

General Results

In the user study, 2846 motions were transcribed by the algorithm. 2670 of

them are TPs, 176 are FPs, and 68 are FNs. The overall Precision and Recall

of the transcription algorithm are: Precision = 0.938, Recall = 0.975.
Below, we give a summary of the results for all transcribed basic motions.

Table 2. Summary of the results for transcribed hand motions.

Hand Motions
Grasp Release Position Apply Pressure Disengage
TP 384 380 60 31 29
FP 21 35 0 0 0
FN 3 5 2 0 2
Precision 0.948 0.916 1 1 1
Recall 0.992 0.987 0.968 1 0.935

Table 3. Summary of the results for transcribed arm motions.

Arm Motions

Reach Move Crank
TP 314 342 34
FP 1 26 4
FN 3 4 0
Precision 0.997 0.929 0.895
Recall 0.991 0.988 1

Discussion

As it is seen from the general results, our algorithm has a good overall per-
formance. The majority of TPs in Grasp (see Table 2) are caused by tracking
problems. Additionally, they lead to TPs of Release motion, as Grasp and
Release are interdependent motions.

Leg Motion and Foot Motion transcription (see Table 5) can be improved
by additional trackers attached to each leg. As we only used two trackers on
the feet, it is difficult to distinguish between those two motions. Addition-
ally, redefining empirically found parameters for different step types can also
improve precision and recall for different Step variations.
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Table 4. Summary of the results for transcribed body motions.

Body Motions
Sit Arise from Sit Bend Arise from Bend
TP 64 62 33 33
FP 0 0 0 0
FN 1 2 0 0
Precision 1 1 1 1
Recall 0.985 0.969 1 1
Kneel one Arise from Kneel both Arise from both
Knee one Knee Knees Knees
TP 66 66 33 33
FP 0 0 0 0
FN 0 0 0 0
Precision 1 1 1 1
Recall 1 1 1 1

Table 5. Summary of the results for transcribed leg gestures.

Leg Gestures

Step Side Step Turn Step Leg Motion Foot Motion
TP 151 131 98 58 38
FP 16 20 0 15 7
FN 3 4 32 10 26
Precision 0.904 0.868 1 0.795 0.844
Recall 0.981 0.97 0.754 0.853 0.594
CONCLUSION

In this paper, we presented a decision tree approach to automatically tran-
scribe MTM-1 basic motions in VR. We discussed all the potential benefits
of using VR for the MTM analysis. We presented our user study procedure
as well as a thorough explanation of the decision tree approach we proposed.
We finalized our paper by presenting and discussing the results of our study.

For future work, the setup could be enhanced by additional trackers on the
legs to improve Foot and Leg motion recognition, as well as an eye tracker to
detect Eye motions. The algorithms could be improved by redefining thresh-
olds for Side step and Turn step motion. Finally, the study procedure in terms
of realistic tasks could be improved by using the algorithm in an already
existing industrial workplace.
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