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ABSTRACT

By and large, the so-called “Human Error” is considered as the main cause of traffic
crashes – proportions of “more than 90%” of crashes “caused” by human errors are
often mentioned in the press, in the political debate, even in scientific literature. By
replacing human drivers (HD) by automated drivers (AD), thus removing the influence
of human factors on the driving task, Automated Vehicles (AV) would then allegedly
hugely benefit road safety. However, human factors are often found in combination
with other types of factors (e.g., environmental, traffic or vehicular) as generators of
road crashes. Moreover, precise analyses of crash-producing mechanisms highlight
human factors relating to failures in the driving functions (e.g., perception failure)
and human factors explaining these driving failures (e.g., low alertness or attention).
Automated drivers will remain prone to the former type of failure and will only avoid
the latter to replace it with new types of failures (e.g., inability to identify obstacles
or assess the intentions of other road users). Indeed, in many situations, automated
drivers will not perform as well as human drivers and even cause new types of failures
in human drivers (e.g., overtrust in AV out of ignorance of the automation’s limits).
All these issues require new analysis models for retrieving the relevant information
when collecting accident or safety critical event data and suggesting new road safety
measures. Having recently published an entirely new Automated Driver Functional
Failures (ADFF) model and an updated taxonomy for Human Driver Functional Fail-
ures (HDFF) leading to road crashes in the context of shared or delegated driving
tasks between human and automated drivers, the authors propose to address the
Explanatory Factors for both types of failures in the present paper.

Keywords: Road safety, Safety critical events, Functional failure, Explanatory factors, Auto-
mated vehicle, Taxonomy, Human factors

INTRODUCTION

In the field of road accidents, studies often tend to confuse the analysis of
causes with the search for responsibility. Such confusion leads authors to
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incriminate “human error” or “the human factor”, with no clear distinction
between these notions, as the major cause of accidents in proportions ranging
from 70% to over 90% (e.g., Medina et al., 2004; Karacasu and Er, 2011).
In the final analysis, this amounts to stigmatizing road system users as the
culprits behind most of its malfunctions. The disadvantage of a generalizing
approach of this kind is that it fails to take into account the finesse and com-
plexity of the processes and factors at play in accident dynamics. The result
is to considerably limit the means of preventing their production. Scientific
work using in-depth analysis of traffic accidents shows the need to develop
appropriate analysis models to better characterize the difficulties and factors
facing users of the driving system at the various stages of the process lead-
ing up to a collision (e.g., Ljung, 2017; Van Elslande and Fouquet, 2017).
In particular, these models make it possible to distinguish, within the human
component of the system, between the malfunctioning factors, on the one
hand, and what constitutes the result of this malfunctioning on the driver’s
activity, on the other. This ultimately boils down to distinguishing between
(human) causes and their effects (on human activity). And such a distinc-
tion is essential, as shown below, in view of the development of autonomous
vehicles and the sharing of driving tasks between the human operator and
the driving automaton.

A Sequential and Systemic Analysis of Accident Process

The fundamentally dynamic nature of driving activity means that the acci-
dents that occur during it are events that unfold in space and time, according
to a progression that it is useful to apprehend in order to understand the
mechanisms by which they are produced. The first step in accident analy-
sis is to reconstruct the kinematics of the sequence of events. Each accident
can thus be modelled as a series of chronologically linked sequences (Girard,
1993; Guyonvarch et al., 2019). The sequential analysis model shown in
Figure 1 sets out the key stages in the accident process and the differentiated
influence of the factors involved at each sequential stage. The characteriza-
tion of these “situations” enables to break down the various chronological
stages of the accident in a consistent way, and to facilitate a systematic anal-
ysis. For each of these situations, once described from a sequential point
of view, the functional analysis described below will enable the explana-
tory mechanisms to be identified. With particular reference to the study
of “human factors” within the accident process, this functional analysis
will enable to identify 1) the failures in driver activity, and 2) the elements
explaining these driver failures.

Moreover, contemporary research defends the need to rely on systemic
models to understand the complex nature of accidents, and particularly to
account for the role played by the human component in the genesis of dys-
functions (Hollnagel, 2004; Dekker, 2004; Reason et al., 2006; Rasmussen,
1990). According to this approach, an accident is part of a socio-technical sys-
tem. It is the result of the complex combination of different orders of factors
which have a more or less direct influence on malfunctions. From this point
of view, the unsafe acts of operators (human errors) are not considered as



Human Drivers and Automated Vehicles Team Up for the Better and the Worse 393

the cause of the deterioration of situations, but as the consequence of a set of
failing material and/or organizational conditions, which the accident reveals.
Nevertheless, these human errors mark a key stage in the process, a breaking
point between a situation that has been satisfactorily mastered up to now
and a situation that has deteriorated to the point of requiring an attempt at
recovery in the form of an emergency maneuvers (Figure 1). These are there-
fore essential to identify in order to fully understand the precise nature of
the difficulties encountered by the drivers, which they were unable to control
adequately and in a timely manner. But human errors also need to be clearly
distinguished from the factors that led to them, whether human, technical or
organizational, so as not to confuse causes and effects. And this becomes all
the more important when thinking to analyze the potential problems linked
to the development of autonomous vehicles, to the extent that these vehi-
cles, even if they will not be subject to the human factors, could be likely to
produce functional failures (driving errors) when confronted to some critical
situations (Chajmowicz et al., 2023).

Figure 1: Sequential accident analysis model (adapted from Van Elslande, 2023).

Functional Failures and Factors of Failures

A crucial point in distinguishing between human error and human factors is
to clearly differentiate between 1) a failure of any of the functions that road
users put forward to perform their driving task, and 2) the human factors that
contribute to the failure of these operational functions. Indeed, it is important
to bear in mind that, at least so far, the road user is both a component of the
driving system and the regulator of that system in the end.

As a component, the human part is characterized, like other components,
by a number of variables which are in a more or less positive state for the
proper functioning of the system as a whole. These human factors include
vigilance, attention, motivation, etc. (Figure 2). And as the system’s final reg-
ulator, he/she is in charge of the driving task, which he/she carries out by
implementing a number of operating functions, ranging from perception to
action, via cognitive functions such as comprehension, anticipation, decision
making, etc. And the result of these operating functions is - most of the time –
a correct adaptation to the driving situation. But there may be times when
the system’s condition is too degraded for the driving functions to adapt.
When this happens, it can lead to the failure of one or more of these opera-
tional functions. As the incriminated functions fail to adapt to the situation,
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the result is what is generally referred to as a “human error”, and which
has been systematized in previous research works (e.g., Van Elslande, 1997;
Van Elslande and Fouquet, 2007) under the label “functional failure”. An
advantage of this terminology is that it highlights the fact that these are the
same functions that allow the driver to adapt to the situation and which can
sometimes fail if the conditions for carrying out the task are too imperfect.
Another advantage is that it can be applied to both the human driver and the
automated vehicle in the sense that these two entities must have access to the
same functions, even if they use different tools, to perform the driving task.

Figure 2: Road user as a component and a regulator of the driving system (adapted
from Van Elslande and Fouquet, 2007).

The in-depth analysis of hundreds of accidents has led to the definition of
analysis grids that can account for the functional failures to which road users
are subject in traffic accidents. In line with what has been defined above, a
first grid reports functional failures produced at the different stages of infor-
mation processing and execution of action, and a second grid accounts for
the factors of these functional failures, including the human factors corre-
sponding to the state of the driver in terms of psychophysiological condition,
experience, attention, motivation, etc. The aim of these grids is to highlight
the mechanisms that explain the production of the different kinds of driving
errors committed by road users, in relation to the driving context in which
they occur, and the different orders of factors that have more or less directly
contributed to them. Numerous research studies using these analysis models
have been carried out during the last decades, enabling us to characterize the
specific nature of the problems encountered by different driver populations
(e.g., elderly rivers, powered two wheelers, etc.) and the critical influence
of typical factor such as vigilance, alcohol, cannabis, inattention, etc. (e.g.,
Van Elslande et al., 2008; 2012; Van Elslande and Fleury, 2000; Hoel et al.,
2011). However, the application of these grids to the analysis of accidents
or near-accidents involving automated vehicles requires a number of adjust-
ments, both in terms of the potential failures of the vehicle itself, and those
of the drivers who share their driving task with the automated functions
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of their vehicle, a task-sharing that can lead to new kinds of errors (e.g.,
misunderstanding of the activation state of the autopilot, overreliance in its
capacity, etc.). The development of these new grids of analysis is the subject
of a multi-disciplinary collaborative work between LAB and Gustave Eiffel
University.

In order to explain the usage of the functional failure and their explana-
tory factors, the authors provide use cases to detail the correct attribution of
these factors. The next sections contain descriptions of road crashes involv-
ing conventional and automated vehicles as well descriptions of a corpus of
near-crashes.

A Typical Example Involving Only Human Drivers (No Automation)

Description: At an intersection, a vehicle slowly turned right, the following
two vehicles consequently reduced their speed to a complete stop. Coming
from behind, the driver of vehicle A did not notice that the traffic ahead had
stopped. He braked and changed line to the left, accelerating and flashing
headlights in the hope that the oncoming vehicle B would slow down. That
didn’t occur and a small overlap frontal impact resulted.
Driving conditions: Dry surface, daylight, rural area.

Figure 3: Crash mechanism.

Human Failures, Explanatory Elements: The driver of the vehicle A tardily
detected the stopped vehicles ahead. Explanatory elements are speeding, dis-
regard for risks associated with the spot (that he routinely travelled through)
and overconfidence in his own driving abilities and signals sent to/by other
road users.

The vehicle B driver didn’t know how to react in this encounter of unusual
traffic circumstances. Explanatory elements for this are that he was confi-
dent that his vehicle had been seen and anticipated that the oncoming vehicle
would yield.
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A TYPICAL EXAMPLE INVOLVING HUMAN AND AUTOMATED
DRIVER

Information in this section was retrieved from the 2020 NTSB Highway
Accident Report on the fatal crash in Mountain View, California, March
23, 2018.
Description: The Tesla was travelling on the left lane of the highway, with

autopilot cruise control set on a head vehicle travelling in the same lane
(Figure 4).

Because of the low quality of the road marking (Figure 5), the Tesla’s lane
keeping feature mistook the left-hand side marking of a gore highway sepa-
ration zone for the actual left lane marking and steered the vehicle left, with
a new constant heading of a few degrees more than the original safe heading.
In doing so, cruise control lost the head vehicle and had the Tesla accelerate
over the highway separation gore area (Figure 6) and approach the highways
lane separator at great speed (est. 114 km/h).

Finally, the Tesla crashed into the separator that had been damaged from
a previous crash weeks before (Figure 7). Two other vehicles were involved
in a secondary collision with the Tesla, whose driver died at the hospital.

Figure 4: Crash area approach #1.

Figure 5: Crash area approach #2.

Failures and their explanatory elements: Failures leading to the crash can
be attributed to both the Tesla’s automated driver and human driver, as they
shared the driving task.

• The Tesla’s automated driver failed to plan a safe trajectory for the vehicle.
Explanatory element is the poor quality of the road markings, that were
last painted anew years before crash and repainted post-crash (Figure 8).



Human Drivers and Automated Vehicles Team Up for the Better and the Worse 397

Figure 6: Crash area approach #3.

Figure 7: Crash scene.

Figure 8: A few months after crash.

We may notice that the automated driver underperformed as compared to
the thousands of human drivers travelling through the place daily.

In the instants preceding the crash, the Tesla’s human driver was hands
off the wheel. He made no effort to avoid the crash when he had 7 sec-
onds to react to the vehicle leaving its intended course. This is a new kind of
human driver failure. Explanatory factor is overtrust in the automated driver,
a consequence of routine usage by this seasoned human driver.

LESSONS FROM PRESENT DAY SAE LEVEL 4 AUTOMATED
VEHICLES TESTS

We chose to analyze the year 2022 disengagement reports dataset of the
Department of Motor Vehicles (DMV) in California. Autonomous vehicle
manufacturers that are testing vehicles in the Autonomous Vehicle Tester
(AVT) Program and AVT Driverless Program are required to submit annual
reports to share how often their vehicles disengaged from autonomous mode
during tests on open roads. This dataset contains details on automated
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drivers’ failures and their explanatory elements. It is larger than its counter-
part on collisions reports. As an example, in 2022, there were less than 150
collisions reported but more than 8000 disengagements. Upon analyzing the
latter, we found a wide array of text verbatims of incidents, as all operators
have their own ways of describing issues. After solving this, we found that
explanatory factors belonged to a handful of categories:

• Present in nearly 25% of disengagement cases were the hardware and
software malfunctions explanatory elements.

• The second type of explanatory factors (present in about 20% of cases)
was bad assessment of either the behavior of other road users or the
environment (includes road and signals layouts)

• The third type consisted in identification errors: obstacles, road edges,
other road users were not identified or not as interfering with the auto-
mated driver’s path, so safety drivers intervened.

• The fourth type of explanatory factors were decision or attitude issues
with road rules. Automated drivers were found aggressive or exceedingly
careful, even blocking traffic to avoid a slight road rule infringement.

• Other explanatory elements consisted of cartography discrepancies, detec-
tion failures due to poor perception systems or hampering by e.g., poor
weather and execution errors such as going too fast in sharp bends.

TOWARDS A COMPREHENSIVE LIST OF EXPLANATORY FACTORS

Bearing the analyses hereabove in mind, also willing to elaborate a simplified
version of earlier preliminary works (Alvarez, 2017) for practical use in the
field, we suggested grids for human and automated drivers’ failures in crashes
and near crashes (Chajmowicz et al., 2023). From this study, the main Auto-
mated Driver (AD)-related headers in the Human Driver (HD) Functional
Failure grid were:

Table 1. Headers in the HD Functional Failure grid concerning AD.

Domains Type of failure Code SAE

Perception No or careless monitoring of AD by HD A4:5 L2:4
Diagnosis HD not aware of AD status as seen through HMI B5 L1
Prediction HD expects AD to perform tasks it cannot perform C4 L1
Decision HD disconnects AD or ignores its warnings D4 L1
Decision HD tricks AD to be able to engage in secondary task D5 L2
Execution HD cannot handle when requested to take over by AD E1:2.10 L1:4

and the main headers in the Automated (AD) Functional Failure grid were:

Table 2. Main headers in the AD Functional Failure grid.

Domains Type of failure Code SAE

Detection No or only partial detection by AD sensors A1:4 L1
Diagnosis Poor assessment of road layout by AD B1 L1
Diagnosis Poor assessment by AD of HD status or action B2 L1

Continued
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Table 2. Continued

Domains Type of failure Code SAE

Diagnosis Poor assessment of vehicle environment by AD B3 L1
Diagnosis Poor identification of other road user or obstacle by AD B4 L1
Diagnosis Poor understanding by AD of other road user’s behavior B5 L2
Prediction Poor reaction of AD to unexpected maneuver by other C1 L2
Prediction Poor reaction of AD to no correction by other road user C2 L2
Execution AD disregards safety rule (e.g., speed limit) by mistake D1 L1
Execution Inappropriate AD action when faced with hazard D2 L1
Execution AD is unable to perform the driving task F1:2 L2
Homicide Offensive remote take-over of AD H1 L2
None No failure Z L1

In Tables 1 and 2, SAE refers (unless stated otherwise) to the minimal
automation level of the AD-equipped vehicle, with reference to the SAE grid
(SAE, 2021). For instance, only vehicles with SAE level L2 and above would
be prone to types of failures tagged “L2”. “Code” refers to the reference
numbering in our grids.

Only for SAE L5 vehicles are AD failures the sole causers of crashes. In all
other cases, the HD should supervise the AD: not doing so is an HD failure
that can lead to a crash if the AD also fails.

For all those failures, we could identify explanatory factors. Tables 3 and 4
list factors concerning the direct interactions between HD and AD.Of course,
many more explanatory factors concerning indirect interactions exist and
are also part of our coding tables: for instance, Human Drivers’ attention
may be drawn away from the task of supervising AD by any kind of in-
vehicle (e.g., mobile phone) distractor. HD-like, AD’s perception might be
hampered by bad road or lighting conditions. We chose to concentrate on
direct interactions, for the sake of brevity.

Table 3. Explanatory factors for AD-related HD Functional Failures.

Experience U.X.1.3.5 Poor experience of interactions with AD
U.X.1.3.8 Poor understanding of AD’s HMI
U.X.2.3.1 Overconfidence in AD capabilities
U.X.2.3.2 Overconfidence in V2X Communication

Attention U.A.1.1.2.18 HD distracted by one or more signals from AD
U.A.1.2.2.4 HD’s attention drawn by AD audio signal while driving
U.A.1.3.2.4 HD’s attention drawn by AD visual signal while driving
U.A.1.3.2.4 HD’s attention drawn by AD haptic signal while

driving
U.A.2.2.1 The HD was in a phase of supervision (without action)

of driving delegated to the AD
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Table 4. Explanatory factors for AD Functional Failures (Part 1).

Malfunctions AD.U.E.1.1 In-vehicle perception sensor malfunction (e.g.,
broken, scratched, flooded, mudded,
ill-maintained)

AD.U.E.1.2 In-vehicle actuator malfunction (e.g., broken,
ill-maintained)

AD.U.E.1.3 Poor transmission of information between
sensors and actuators

AD.U.E.1.4 Poor transmission of information from sensor to
HMI / HD

AD.U.E.1.5 In-vehicle V2X transmitter/receiver malfunction
AD.U.E.1.6 External HMI malfunction

Defects AD.U.E.2.1 Software (e.g., planning own or others’
trajectory) error, timeout

AD.U.E.2.2 Misleading or no information from sensor to
-HMI / HD

AD.U.E.2.3 Misleading or no information from V2X receiver
to HMI / HD

AD.U.E.2.4 Defective or obsolete internal map of driving
environment

AD.U.E.2.5 Defective learning database for other users or
environment identification

AD.U.E.2.6 Defective prediction algorithm for other users’
intents

AD.U.E.2.7 Defective prediction algorithm for hazards /
dangers

Compliance
with road
rules

AD.U.E.3.1 Strong identification with priority status
AD.U.E.3.2 Strong identification with non-priority status
AD.U.E.3.3 Strict compliance to road rules resulting in no

possible path for progression
AD.U.E.3.4 Strict compliance to road rules regardless of

surrounding traffic flow

EXAMPLES

Concerning the no automation crash described in this paper, the vehicle A
driver tardily detected the stopped vehicles ahead (HD.A5.1). Explanatory
elements are speeding (U.E.4.1.1) and overconfidence (U.E.3.2.1). The vehi-
cle B driver expected vehicle A to yield (HD.C2.3). Explanatory elements for
this are that he was confident that his vehicle had been seen (U.E.3.6.1).

Concerning the Tesla accident, the AD failed by poorly assessing the road
layout (AD.B1). The most obvious explanatory factor for this is the poor
quality of road markings (E.S.2.3), poor cartography (AD.U.E.2.4) may have
played a part. The HD failed in monitoring the AD (HD.A5.6), explana-
tory factors are overtrust in AD capacities (U.X.2.3.1) and engaging in a
secondary task (U.A.1.1.2.9).

Concerning the California disengagement dataset, all HD supervisors are
flawless (HD.Z). AD mostly had AD.F1:2-type of failures, with explanatory
factors mostly AD.U.E.1.1, AD.U.E.1.2 and AD.U.E.2.1.
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CONCLUSION

Departing from the previous analysis grids of road crashes that only take into
account human drivers’ failures, we set up new grids encompassing human
and automated drivers’ failures and their explanatory elements. These can
now help researchers to analyse crashes and near crashes in the whole array
of delegated driving modes (from SAE levels L1 through L5).
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