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ABSTRACT

This study introduces an eXplainable Artificial Intelligence (XAl) designed to predict
which emergency patients require acute hospital care in pre-hospital phase and pro-
vide explanations for its reasoning. Emergency medical care is broadly divided into
two stages: pre-hospital and in-hospital stages. Various information gathered dur-
ing the emergency activities performed by paramedics in the pre-hospital stage and
while transporting patients is crucial in describing the emergency patient’s condition.
However, key pre-hospital information, important for the in-hospital medical care of
emergency patients, is filtered based on the ambiguous memory of the paramedics,
and is verbally shared in a condensed form via phone or radio when transmitted to
the hospital. To address this issue, we have developed a model that predicts emer-
gency patients based on pre-hospital information integrating an ensemble model and
advanced XAl techniques. This proposed model not only predicts emergency situa-
tions requiring acute hospital care but also ensures the model’s predictive processes
remain transparent and interpretable for medical professionals, addressing the criti-
cal need for an information linkage system between the pre-hospital and in-hospital
phases.

Keywords: Explainable artificial intelligence (XAl), Pre-hospital emergency prediction, Acute
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INTRODUCTION

Effective emergency medical care is crucial in saving lives and improving the
recovery prospects of patients in critical health conditions or those suffer-
ing severe injuries. The emergency medical service process is broadly divided
into two phases: the pre-hospital and the in-hospital phase, as illustrated
in Figure 1. The pre-hospital phase encompasses medical services provided
before a patient arrives at a hospital, typically by paramedics or emergency
medical technicians. This phase includes the preliminary assessment, stabi-
lization, and transport of patients. The in-hospital care consists of medical
services rendered upon the patient’s arrival at the hospital, ranging from
further assessments to treatment and recovery efforts (Wilson et al., 2015).
A significant challenge in the seamless integration of these two stages is
the effective utilization of pre-hospital information (Zhang et al., 2021).
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However, much of the information about the patient’s condition during trans-
port and the care performed by paramedics at the pre-hospital stage has not
been systematically delivered to the hospital. In South Korea, typically, only
very brief information, filtered through the paramedics’ subjective judgement,
is relayed to the hospital orally via radio. Consequently, valuable information
that could influence patient treatment plans and outcomes may not be fully
utilized in hospital care. Currently, this is the case in many countries due to the
absence of a real-time information linkage system between the pre-hospital
and in-hospital phases.

Pre-hospital phase In-hospital phase _
® ® ° ® ® ° ®

Emergency Citizen's Report Dispatch Transportation Pre-hospital Handover to  Hospital care -+ Discharge
Situation Report Reception care Hospital

Figure 1: Process of emergency medical service.

To tackle this issue, we propose a novel approach employing an explain-
able artificial intelligence (XAI) model. This model is designed to identify
emergency patients requiring acute hospital care in the pre-hospital stage and
elucidate the reasoning behind its predictions to the medical professionals,
thus enabling medical professionals to comprehend the predictive elements
behind its decisions and perform treatments considering this information.
Such transparency aims to foster trust and make the model’s predictions
more interpretable. This approach can be used for bridging the information
gap between pre-hospital and in-hospital care, ensuring that decisions of the
in-hospital stage are made based on a comprehensive understanding of the
patient’s condition and the pre-hospital measures undertaken.

PROBLEM DEFINITION AND DATASET DESCRIPTION

The aim of this study is to develop and validate an XAI model capable of
accurately predicting the need for urgent hospital care based on information
obtained during the pre-hospital phase. The primary data source used in this
research is paramedic activity logs. These logs are comprehensive documents
that record the patient rescue efforts and emergency medical treatment activ-
ities administered by paramedics in response to emergency situations during
transport. They include a wide range of information, including the patient’s
condition, emergency treatments provided, and details of the transportation
process.

For the proposed XAI model training, the paramedic activity logs data
is labeled with the disease information contained in the discharge summary
records. Our research specifically focuses on 24 critical emergency diseases
that necessitate acute care, as outlined in Table 1. Of the 1.6 million data
entries we used, only 9.13 percent of the patients belong to critical emergency
diseases that require acute care. Furthermore, as shown in Figure 2, there is
a clear difference in the proportions of each of the 24 diseases of interest,
indicating that the data has significantly imbalanced classes.
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Table 1. 24 critical emergency diseases.

No Disease No Disease

1 Lethal Arrhythmia 13 Disseminated Intravascular
Coagulation (DIC)

2 Gallbladder and Biliary Disease 14  Poisoning

3 Shock 15  Severe Infection and Sepsis

4 ARDS/Pulmonary Edema 16  Severe Trauma

N Status Epilepticus 17  Acute Aortic Syndrome

6 Acute Renal Failure, Diabetic Coma 18  Acute Abdominal Conditions

7 Acute Myocardial Infarction STEMI 19  Bronchial Hemorrhage and

Foreign Body
8 Acute Myocardial Infarction NSTEMI 20  Obstetric Emergency

9 Acute Cerebrovascular Accident 21  Severe Burns

10  Cerebral Hemorrhage 22 Emergency Vascular Disease
11  Gastrointestinal Bleeding/Foreign Body 23  Ophthalmologic Emergency
12 Cardiac Arrest 24 Urological Emergency

Cerebrovascular

Accident

ARDS/Pulmonary
Edema

Acute Renal Failure,
Diabetic Coma

Figure 2: Proportions of each of the 24 diseases.

Data pre-processing involved data resampling and cleaning processes.
Resampling techniques, such as under-sampling and over-sampling, were
employed to balance the data relating to emergency conditions, addressing
the issue of data imbalance. Furthermore, the data cleaning process included
the removal of incomplete or erroneous data entries, elimination of duplicate
information, handling of missing values to enhance data quality. Lastly, the
transformation of features for the XAI model training was conducted. These
pre-processing steps are essential for maximizing the efficiency of model
training and improving prediction accuracy.

EXPLAINABLE PRE-HOSPITAL EMERGENCY PREDICTION MODEL

In this section of this paper, we delve into the specifics of the explain-
able severe emergency diseases prediction model, incorporating an ensemble
approach with a focus on XGBoost (eXtreme Gradient Boosting) (Chen and
Guestrin, 2016), a tree-based ensemble model, and SHAP (SHapley Additive
exPlanations) (Lundberg and Lee, 2017) for explainable Al techniques.
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Our predictive model harnesses the power of XGBoost, a highly effi-
cient and scalable implementation of gradient boosting, to forecast the need
for acute hospital care among emergency patients at the pre-hospital stage.
XGBoost stands out for its capability to handle large-scale tabular data
over other machine learning approaches while providing an intrinsic over-
fitting regularization function. As depicted in Figure 3, XGBoost operates
on the principle of sequentially building trees, where each new tree corrects
errors made by previously constructed trees, thereby continuously improv-
ing prediction accuracy. To augment the transparency and interpretability
of our model, we integrate SHAP values, a model-agnostic explainable Al
technique that clarifies the contribution of each feature to the model’s pre-
dictions. The model is trained on the pre-hospital information collected from
the paramedic activity logs, which include patient demographics, vitals, and
treatment actions. To optimize the model’s performance, we incorporate
Optuna (Akiba et al., 2019) for hyperparameter optimization, tuning the
hyperparameters of model to achieve the most favorable outcomes. Following
the training of the XGBoost model, we apply SHAP to render its decision-
making process transparent and interpretable. SHAP values elucidate the
impact of each feature on the prediction, furnishing a comprehensive and
easily understandable breakdown for medical professionals.

Input Data EXPLAINABLE PRE-HOSPITAL Output
EMERGENCY PREDICTION MODEL
XGBoost Prediction
Data obtained o |[=e |5 e Lotnal anyinmia | GG | | ey
at the pre-hospital stage Optuna o |le™e | le™e" 7 o N o
Hyperparameter 1L y
Pilient ldj’;a\’lsl aptimization N R R Summary slot Explanation vl et
5 .
Body Temperature. = —
: X, 00) S ——f
Medical history i e
SHAP E) “a
E Model-agnostic explanation method = =
First aid «m

Figure 3: Diagram of explainable pre-hospital emergency prediction.

The integration of SHAP with our XGBoost model allows for the visualiza-
tion of key reasons behind the model’s predictions, which are communicated
to medical staff. This ensures that the model’s outputs are not just accurate
but also meaningful and actionable for those making clinical decisions. Two
main types of visualizations are used to interpret the model’s results:

Summary Plot: This provides an overview of the impact of different
variables on the predictions for the condition being analyzed. It helps in
understanding the relative importance of each feature at a global level.

Waterfall Plot: For individual patient predictions, waterfall plots detail the
contribution of each variable to the specific outcome. This granular insight is
crucial for medical professionals assessing the urgency and specific needs of
a patient, allowing them to understand how and why the model has reached
its conclusion.

Through the use of XGBoost and SHAP, complemented by Optuna for
hyperparameter optimization, our model not only predicts severe emergency
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conditions with high accuracy but also ensures that these predictions are
transparent and interpretable. This approach bridges the gap between
advanced machine learning techniques and clinical applicability, facilitat-
ing the adoption of Al tools in emergency medical settings and enhancing
patient care by providing clear, actionable insights derived from pre-hospital
information.

EXPERIMENTAL RESUTLS

To evaluate the model’s predictive capabilities, we use Accuracy and F1 score.
Accuracy measures the proportion of total predictions that are correct. While
intuitive, accuracy might not be the best measure in imbalanced datasets
where the event of interest (e.g., emergencies) is rare. F1 score is a harmonic
mean of Precision and Recall. Precision indicates the proportion of positive
identifications that are actually correct. In the context of acute hospital care,
it reflects how many of the predicted emergency disease are genuine. Recall
(Sensitivity) measures the proportion of actual emergency diseases that are
correctly identified. Upon examining the performance results summarized in
Table 3, it appears necessary to improve the model by increasing Recall to
enhance the F1 score. However, from the perspective of Accuracy, it was
observed that the model secured quite accurate results.

Table 2. Prediction results (top 5 diseases based on F1 score).

Disease Accuracy Flscore
Cardiac Arrest 98.30 0.56
Acute Renal Failure, Diabetic Coma 85.43 0.53
Gastrointestinal Bleeding/Foreign Body 89.23 0.52
Poisoning 86.87 0.52
Severe Burns 98.28 0.50

Figure 4 presents a summary plot, one of the SHAP results for the cardiac
arrest prediction model. The x-axis shows the SHAP values, while the y-axis
is organized in descending order based on the importance of the variables.
The color coding of the dots represents the actual values of the variables,
with redder hues indicating higher values and bluer hues indicating lower
values. Dots located in the negative region of the x-axis negatively influence
the prediction, whereas those in the positive region have a positive impact. A
pattern of blue dots on the left and red dots on the right suggests a strong pos-
itive correlation with the target variable, whereas the reverse pattern implies
a negative correlation.

From this analysis, we deduced the variables the Al model relies on to
predict cardiac arrest. The model was more likely to predict cardiac arrest
when the paramedics assessed the patient’s symptoms as cardiac or respira-
tory arrest, and emergency interventions such as CPR, oxygen delivery via
Bag Valve Mask (BVM), AED Monitoring, and airway management were
implemented, particularly when the patient’s state of consciousness was not
Alert (A) but Unresponsive (Coma).
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SHAP Summary plot for Cardiac Arrest High
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Figure 4: SHAP summary plot for cardia arrest.
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Figure 5: SHAP waterfall plot of a patient (model prediction: cardiac arrest).

The waterfall plot allows for a detailed analysis of how each variable,
including symptoms assessed and interventions performed by paramedics,
impacts the model’s prediction. This feature is instrumental for hospital
physicians, as it provides a visual confirmation of which pre-hospital stage
information most accurately describes the patient’s condition upon arrival.
Consequently, this aids in bridging the informational gap between pre-
hospital and in-hospital data, ensuring that treatment decisions are informed
by a comprehensive understanding of the patient’s pre-hospital care.

In the scenario depicted by Figure 5, paramedics assessed a patient exhibit-
ing severe symptoms indicative of cardiac and respiratory arrest. Imme-
diate pre-hospital emergency interventions were administered, including
Cardiopulmonary Resuscitation (CPR), oxygen delivery using a Bag Valve
Mask (BVM), comprehensive airway management, and monitoring with an
Automated External Defibrillator (AED). These interventions were critical in
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stabilizing the patient’s condition en route to the hospital. Our model pre-
dicted the patient’s condition as a cardiac arrest, influenced significantly by
the patient being in a U (Coma) state.

CONCLUSION

This study introduces an innovative model of explainable artificial intelli-
gence that predicts emergency medical conditions from pre-hospital infor-
mation, markedly enhancing emergency medical services’ continuity and
quality. Integrating advanced ensemble models with SHAP for explainabil-
ity, our model accurately forecasts severe emergency conditions and provides
insight into the reasoning behind its predictions. The model’s transparency
and interpretability crucially bridge the gap between paramedic-provided
pre-hospital care and in-hospital treatments, allowing medical profession-
als to make informed decisions with a comprehensive understanding of the
patient’s pre-admission condition and interventions.

Experimental results underscore the model’s ability to identify life-
threatening conditions, including cardiac arrest and acute renal failure,
accurately. Detailed visualizations, such as summary and waterfall plots, clar-
ify the contributions of various variables to these predictions. Adopting this
XAI approach represents a significant advancement in emergency medical
care, promising improved patient outcomes through seamless information
flow between pre-hospital and in-hospital care phases. This study estab-
lishes a precedent for integrating explainable Al into healthcare, highlight-
ing AD’s potential to enhance decision-making processes and build medical
professionals’ trust in Al-assisted predictions.
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