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ABSTRACT

This paper investigates methods for evaluating the explainability of transformer mod-
els analyzing time series data, a largely unexplored area in the field of explainable AI
(XAI). The study focuses on application-grounded methods involving human subject
experiments with domain experts. On-site evaluations were conducted in two indus-
trial settings involving 14 control room operators. The evaluation protocols consisted
of methods to measure the metrics of subjective comparison, forward simulatabil-
ity, and subjective satisfaction. The results indicate that the chosen combination of
evaluation metrics provide a multi-faceted assessment on quality and relevance of
explanations from an operator’s perspective in industrial settings, in turn contributing
to the field of user-centered XAI evaluation, particularly in the context of time series
data and offers insights for future work in this area.
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INTRODUCTION

The integration of Artificial Intelligence (AI) in industrial processes is becom-
ing increasingly common due to its ability to improve product consistency
and reduce operational costs (Javaaid et al., 2021). Integration of AI-based
models into process industries has a key potential in supporting operators
by predictive analytics (Peres, 2020) and transform operations by improving
speed, flexibility and scalability (Woo, 2020).

While AI can complement human operators in industrial applications, it
is most effective when designed to enhance human capabilities rather than
replace them (Longo, 2017; Williamson, 2021). However, their lack of under-
standing can negatively affect operators’ trust in these models and, hence,
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impact the gain from automation (Liu et al., 2023; Gade, 2019). A solution
in calibrating trust can be considered the use of transparent and eXplainable
AI (XAI); i.e. systems whose decision-making mechanism is communicated
in one way or another (Miller 2019; Theodorou et al., 2017).

It is not just that the technical implementation of XAI techniques is an
ongoing challenge, so is the evaluation of their effectiveness. The inclusion of
the context-specific stakeholders is crucial; their domain knowledge strength-
ens their confidence and understanding of the AI agent (Das et al., 2021;
Vantrepotte et al., 2021; Zhang, 2020) and facilitates balancing the bene-
fits of explanations with associated costs (Li et al., 2020a; Li et al., 2020b).
However, current research either completely ignores human understanding
by focusing exclusively on technical metrics (Colin et al., 2022; Miller et al.,
2017) or focus on end users, ignoring that non-expert users perceive dif-
ferent styles of explanations differently (Ehsan et al., 2019). Other work
shows that the majority of XAI research neglects to consider domain experts
in their evaluations (Lopes et al., 2022; Nauta et al., 2023). Furthermore,
the lack of consideration of a wide range of models, tasks, and data types—
including time-series data—in existing literature regarding XAI evaluation
has resulted in evaluation methods being biased towards particular models
and tasks, most prominently; neural networks performing classification tasks
on image data (Nauta et al., 2023). The complexity of time-series data, which
includes a temporal aspect that image data lacks, increases the challenge for
domain experts to understand explainability (Schlegel et al., 2019), resulting
in some researchers advising against user evaluations of XAI for models using
time-series data (Rojat et al., 2021).

To fill these gaps in research, this paper aims to present a selection of user-
centered XAI evaluation metrics and examples of results for time series deep
learning models in process industries. Our work focuses on time-constant
processes, where there is an inherent increase in complexity between the
causal relationships of operators’ tasks, predictions, and process data (Gade,
2019; Zhou, 2021). Our contributions include: 1) a protocol that combines
metrics and supporting methods for evaluating XAI for time series models;
2) examples of results generated by the protocol in an evaluation setting with
process industry operators 3) an evaluation and discussion of the use of the
protocol in time-constant processes.

TIME-CONSTANT PROCESSES

Time-constant processes are characterized as how quickly the process
responds to changes in the input. The time constant is a parameter that
describes how a first-order linear time-invariant system reacts to a step input.
It quantifies how quickly the process variable responds to changes in the input
where a greater time-constant denotes a slower system response. Delignifi-
cation in paper pulp production and flotation in mining are two examples
of process industries where control room operators face challenges in main-
taining a stable operation as the underlying process is inherently dynamic.
Small adjustments to control parameters can significantly affect the sys-
tem efficiency and the financial outcome. In time-constant processes, the
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interconnectivity between physical parameters further adds to the complexity
of the process. Visual analytics interfaces that display relevant historical data
points and their relationships, as well as consequences of operator adjust-
ments can support in finding suitable strategies (Zohrevandi et al., 2023).
To assess the quality of explanations designed for operators of such complex
processes, evaluation activities need to be tailored to capture a coherent view
of how a model and its explainers aligns with activities and mental models
of users.

EXPERIMENTAL DESIGN METHODOLOGY

We have conducted an application-grounded (Doshi-Veles and Kim, 2017)
evaluation study to assess the explainability of a time-series based trans-
former model (Lim et al., 2021). To achieve this, a web-based dashboard
was developed (see Figure 1) based on initial explainability requirements that
were identified during previous field studies to the industrial plants currently
investigated. A contextual inquiry approach was applied during evaluations
by using observations and semi-structured interviews (Duda et al., 2020)
to support additional methods to measure the chosen metrics (presented in
section Dependent Measures).

Figure 1: A schematic representation of the designed dashboard that was used in the
study. The dashboard contained four views. An overview window (a) which showed
the predicted time-series graph considering the sensor data and the recovery profile
for the key process parameter. A precision-intervals view (b) which showed how often
the key performance parameter would lie within each interval. A feature-importance
view (c) which represented the sensor weight values and an on-demand representation
view (d) which visualized the time-series data of all sensors for the time-period of
interest selected by the operator.

Dependent Measures

To measure the quality of explanations, three metrics were chosen based on
their coverage of evaluation properties proposed by Nauta et al., (2023).
Table 1 lists the dependent measures and specifies the categories each measure
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evaluates. Three user-centric dependent measures were adopted; 1) forward
simulatability, 2) subjective comparison, and, 3) subjective satisfaction.

1) Forward simulatability specifies the extent to which the user relies on
explanations to predict a hidden model output (Doshi-Velez and Kim, 2017).
The measure evaluates the extent to which the user has understood why the
model has generated a certain output (Hase and Bansal, 2020) i.e. output-
completeness. High completeness is in general desired, and being one of few
methods that involves users to evaluate output-completeness (Nauta et al.,
2023), forward simulation becomes an important method to consider during
user evaluations. This measure has been used to evaluate text and tabular data
(Hase and Bansal, 2020), image data (Kim et al., 2016) and time-series-based
interactive simulation environments (Hoernle et al., 2019). To our knowl-
edge, our work is the first to apply forward simulatability during evaluation
of time-series-based ML models in time-constant processes.

2) Subjective comparison tasks the user with comparing different explain-
ers, which is a powerful metric for comparing different alternatives at early
stages of design. Previous researchers have used this metric in evaluation
activities in automated fact checking (Atanasova et al., 2020), recommenda-
tion systems (Chen et al., 2018), image recognition (Ghorbani et al., 2019),
and text classification (Liu et al., 2018).

3) Subjective satisfaction is used to gather insights about satisfaction, use-
fulness, fluency, relevance, trust, and, sufficiency for explainers with a user
in a specific context (Nauta et al., 2023).

Procedure

To comply with safety regulations, the interview sessions were conducted in
a room other than the control room where the operators usually work. The
participant was first introduced to the project goals, the experimental proce-
dure and the consent form. The prototype was then displayed on a computer
screen. Each session included one participant and two facilitators, one lead-
ing the session while the other asking follow-up questions. The participants
could interact with the interface using a computer mouse only. Audio data
was recorded and participants’ interactions with the interface on the screen
were captured through video.

To measure subjective comparison, participants were introduced one
explainer at a time, and using a think-aloud protocol (Ericsson and Simon,
1993), the participant was instructed to explain what they saw in front of
them while they used the mouse to interact with parts of the interface at
a time. When the whole interface was exposed, the participant was asked
to compare the different explainers and their combined contribution to
understanding the model forecast.

To measure forward simulatability, a previously unseen model forecast was
hidden using a piece of paper while providing full access to the explainers in
an attempt to predict the model output. To communicate their prediction, the
participants were asked to point out their prediction on the blocking piece
of paper, as well as verbally announce the predicted increase or decrease in
units.
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To measure subjective satisfaction, semi-structured interview questions
were used together with supporting observations of user interactions, as well
as a 5-point Likert scale questionnaire presented at the end of each session.

RESULTS

In this section we report the types of results generated by each metric and
their supporting methods.

Participants

A total of fourteen process control operators participated in our study: eight
process control operators from the mining industry and six process control
operators of paper pulp production. All operators reported Swedish as their
first language. Breaking down the demographics, it is worth noting that thir-
teen operators identified as male and just a single operator from the mining
industry was female. The operators had varying levels of general knowledge
of ML models, but none of them had seen the designed dashboard previously.

Table 1. The adopted dependent measures used in our evaluation study. Each measure
evaluates a set of conceptual properties as initially presented by Nauta et al.
(2023). For each metric, Nauta et al.’s proposed couplings between metrics
and properties are compared with the couplings identified by the evaluations
carried out in this work. X marks full coverage while O marks partial coverage
by support from another metric.
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Subjective comparison
(Nauta et al., 2023)

X X X X

Subjective comparison
(time-constant
processes)

X O X X

Forward simulatability
(Nauta et al., 2023)

X X X X X

Forward simulatability
(time-constant
processes)

X O O X O

Subjective satisfaction
(Nauta et al., 2023)

X X X X X

Subjective satisfaction
(time-constant
processes)

X X X X

Subjective Comparison

The metric of subjective comparison was measured by allowing participants
to interact with the prototype, comparing multiple explainers with each other
while speaking out regarding what they saw in front of them. This metric was
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found to provide insights mainly regarding the properties of context, coher-
ence, and compactness (size of the explanation in terms of human capabilities
to process it; see Table 1).

Firstly, the think aloud protocol used during subjective comparison pro-
vided insights into how the explainer aligned with previous experience,
expectations and background knowledge of participants. As an example
from this study, depending on their understanding of AI models, participants
varied in how they described the feature importance explainer, those with
less knowledge of AI expressed significant gaps in their understanding of
what this explainer showed. These are examples of findings that could have
been overlooked if the facilitator would initially explain the interface to the
participant rather than the other way around.

Secondly, comparing multiple explainers at the same time provided insights
regarding the interplay between them (compactness), e.g. if they comple-
mented each other or if there was any redundancy. For example, it was found
that participants used the feature importance matrix as guidance of what
sensors to look at into more detail, indicating that it provided an overview
similar to Shneiderman’s information seeking mantra “Overview first, zoom
and filter, then details-on-demand” (1996, p. 2). It was also found that
model attention for specific sensors and time steps in the lookback period
were mostly redundant as this same information was already communicated
through the feature importance matrix.

Forward Simulatability

To assess the metric of forward simulatability, model output was hidden
from the participant, requiring them to predict the model forecast using
only explainers. This metric was found to provide insights mainly regarding
the properties of output-completeness (the extent to which the explainer(s)
cover the model output), context (how well the explanation aligns with user
needs and experience levels) and coherence (alignment with mental models
of operators; see Table 1).

It was found that for time-constant processes using time-series data mod-
els, the ability to assess output-completeness through forward simulatability
might not produce as reliable results as for other data or model types because
of either lack of AI knowledge or task similarity to commonly applied opera-
tor strategies. Only 2 out of 7 participants from delignification, and 2 out of 6
from flotation, all of which expressed greater understanding of the explainers
during subjective comparison, relied on explainers such as feature importance
and attention to predict the hidden model forecast, as is intended during for-
ward simulation. The remaining operators in each process applied commonly
used prediction strategies of analysing values from sensors they normally pri-
oritize during their daily work. When the forecast is hidden, participants
face a similar situation they normally encounter in their daily work where
they have to predict where the process is heading to assess feasible actions.
A reduced understanding of what the explainers show might have defaulted
these participants to use familiar strategies.
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Interestingly, these shortcomings of forward simulatability to evaluate
output-completeness did highlight the metric’s strength of producing insights
for the properties of context and coherence in time-constant processes. In
these situations, operators have specific strategies and information needs tied
to the situation they find themselves in and explanations need to provide rel-
evant information for the specific situations its viewers find themselves in
(Miller, 2019). As such, forward simulatability can become a tool for explor-
ing alignment with task requirements and mental models, or if explainers are
well understood – output-completeness.

Subjective Satisfaction

In our tests, subjective satisfaction was evaluated by semi-structured inter-
view questions throughout the evaluation sessions. The metric was found to
provide great support to forward simulation and subjective comparison for
gathering detailed insights.

Compared to Nauta et al.’s pairing of metrics and components (see
Table 1), the properties of compactness, context, coherence and composition-
ality (how something is explained, the format & structure and organization
of the explanation) and were found to not be as strongly associated in the
metrics of forward simulatability and subjective comparison. However, with
the added support of subjective satisfaction using semi-structured interview
questions, detailed findings regarding the properties could be extracted.

For example, observing critical incidents, i.e. something notable about
usability or user experience, such as miss-clicks or prolonged silence while
focusing on a single object (del Galdo et al., 1986) during forward simu-
lation and subjective comparison was found to provide great support for
assessing compactness or context in that participants would spend extrane-
ous time on observing explanations that were less understandable. By asking
a follow-up question regarding the relevance of the contents, participants are
clearly invited to fill in the gaps. One such example from this work was in
the flotation use case. Here, all 8 participant struggled with finding the right
information during forward simulation. But it was not after a series of follow-
up questions that it became clear that sensors that participants normally took
into account were missing in the interface, in turn disrupting their ability to
assess the forecast according to their mental model of the process, indicating
that the coherence of the explainers was low. Findings like these indicates
that forward simulatability and subjective comparison can create the frame
of mind of where properties like compactness, context, compositionality and
coherence can be evaluated, but additional metrics such as subjective satis-
faction are needed to extract a fuller picture. Similar patterns can be found
in other research frameworks, such as contextual inquiry which exploits the
value of framing by targeted questions while the user is performing tasks in
their natural environment (Duda, 2020).

Limitations

Application grounded evaluations depends on involving the intended end
users carrying out their tasks with the support of the ML model (Doshi-Veles
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and Kim, 2018), which can pose challenges in contexts such as process indus-
tries because of safety reasons or limited access to operators. The evaluations
of this paper were carried out with the intended end users, however not in
their natural environment because of safety risks of interfering with the indus-
trial process. Instead, a separate system in a separate room was used, using
methods such as forward simulation to trigger normal task behavior.

Participants were exposed to all explainers at once during subjective
comparison. While allowing access to all explainers at once provides the
possibility to generate insights regarding the holistic use, some fidelity might
be lost regarding which single explainer might be the most useful for the
participant.

CONCLUSION

This work has presented evaluation metrics and supporting methods for
user-centred XAI evaluation of time series data models in time-constant
processes, which is a largely unexplored space in existing research. The
selected metrics of forward simulation, subjective comparison, and subjective
satisfaction, were found to evaluate XAI properties in somewhat different
ways in time-constant processes using time-series data compared to previ-
ous research for other ML tasks and data types. Forward simulation was
found to indicate if explainers are output complete for time series models for
operators with a higher degree of ML understanding. The metric was also
found to support assessment of how well explainers support existing predic-
tion strategies. If forward simulation is to be used specifically for evaluating
output-completeness for time series models, we recommend balancing the
hidden forecast according to correctness, as suggested by Hase and Bansal
(2020), in turn reducing the risk that the participant would coincidentally
predict the model output when predicting the process or vice versa. Subjec-
tive comparison was found to mainly produce insights regarding interplay
and redundancies between multiple explainers as well as indicate misunder-
standings of the contents of individual explainers. Subjective satisfaction was
found to provide crucial support in generating additional details for several
evaluation properties, highlighting the benefits of using multiple metrics and
methods to gather insights from several angles such as observed behaviour,
spoken thoughts, and answered questions. Overall, this work contributes to
the understanding of user-centered XAI evaluation, particularly in the context
of time series data in time-constant processes and offers insights for future
work in this area.
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