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ABSTRACT

This paper presents an empirical study on the explainability of transformer models
analyzing time series data, a largely unexplored area in the field of Al explainability.
The study is part of an ongoing EU-funded project which applies a human-centered
approach to developing explainable Al solutions for the process industry. Here, we
investigate the choice of explainer mechanisms and human factor needs when devel-
oping eXplainable Artificial Intelligence (XAl) for operators of two industrial contexts:
copper mining and paper manufacturing. On-site evaluations were conducted in these
settings involving control room operators to test the prototype developed in the
project. The results indicate that the method of feature importance alone was not suffi-
cient to provide explanations that are tailored to individuals and situations, as required
by users. Overall, our empirical data supports insights from previous research on
human centered XAl and demonstrates the value of involving end users in the design
process of effective XAl solutions. We also provide design implications which address
human factor needs for such solutions in industrial settings.
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INTRODUCTION

In recent years, there has been a growing interest in the use of Artificial
Intelligence (Al) across various domains. This trend has also strongly influ-
enced the technological advancements in the process industry. Al systems
in this industry have increasingly improved production efficiency, reduced
energy consumption, and ensured safer operations. Despite the high levels
of automation, human involvement and decision making remain important
for the industry’s functioning and regulatory compliance. To mitigate the
potential risks caused by black-box nature of many high-performing tech-
niques used, e.g. distrust and misuse of the technology, eXplainable AI (XAI)
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techniques, i.e. making Al models interpretable and understandable to a
wide range of stakeholders, has been researched and promoted in multiple
domains, such as the medical field (Chakrobartty and El-Gayar, 2021) and
the process industry (Kotriwala et al. 2021). The main body of work for XAI
methods has been done for image classification models, however, the com-
plex nature of time series data with an added temporal aspect that image data
lacks (Siddiqui et al. 2019), calls for enhancing explainability techniques in
domains such as industrial operations. Crucially, determining what consti-
tutes a satisfactory explanation for practical deployment for XAI becomes
paramount in this context. Most explainability methods produce technical
explanations for data scientists and system developers, without consideration
for other stakeholder needs (Miller et al. 2017).

In this study, we aim to fill in this gap and investigate what explanations
are needed for operators in the process industry and what human factors
considerations are needed when developing XAl for specific industrial use
cases. The focused use cases are: UC1. Flotation: predicting copper concen-
tration in the flotation process of copper mining; UC2. Digester: predicting
the quality of the pulping process (quantified by a parameter called Kappa) in
paper pulp manufacturing. On-site evaluations were conducted in these set-
tings involving real control room operators to test the prototype developed
in the project.

Overall, this research offers real-world empirical evidence in industrial set-
tings and demonstrates the value of involving end users in the development
process of effective XAl solutions. Additionally, we present design consider-
ations that cater to the human factors essential for effective XAl solutions in
industrial settings.

BACKGROUND

This section briefly summarizes the state-of-the-art research in the field of
XAI and highlights the importance of a human centered XAl

Explainable Artificial Intelligence (XAl)

Explainable Al is a key element of trustworthy Al which, in turn, plays a
critical role in the industry’s adoption of Al solutions (Arrieta et al. 2018).
A system is considered explainable if it can provide explanations. An explana-
tion offers an “interface between humans and a decision maker that is both
an accurate proxy of the decision maker and comprehensible to humans”
(Guidotti et al. 2018, p. 5).

State-of-the-art explainers are often categorized based on whether they
offer post-hoc or ante-hoc explanations (Theissler et al., 2022). Simple mod-
els like decision trees or linear models produce ante-hoc explanations—they
are intrinsically interpretable by design. On the other hand, complex models
like deep neural networks are not inherently clear in their decision-making,
and therefore require post-hoc methods for understanding. Many post-hoc
methods are agnostic, meaning they can be applied to any prediction model
(Molnar, 2020). The most popular post-hoc and model-agnostic techniques
offer an understanding of opaque models by quantifying the extent to which
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specific feature inputs influence the model outputs (Munn and Pitman, 2022).
Whether to select post-hoc or ante-hoc depends on many factors including
who requires an explanation (Arrieta et al. 2018). While considerations for
explainee requirements often come first, many stakeholders remain unac-
counted for in this process. Most explainability methods produce technical
explanations for data scientists and system developers, without consideration
for other stakeholder needs (Miller et al. 2017). This realization has resulted
in a push for more interdisciplinary Explainable Al research. By incorporat-
ing knowledge from non-technical areas such as sociology and human factors,
we are seeing a shift towards Human-centered Explainable.

Human-Centered XAl

The importance of considering explanations as social has been increasingly
recognized (Miller et al. 2017; Molnar, 2020). Insights from the social
sciences have revealed several properties of explanations that make them
effective in promoting understanding (Miller, 2019). For instance, Miller
(2019) underscores four insights from existing literature: 1) explanations
are contrastive, focusing not on why an event occurred but rather why it
occurred instead of another possibility; 2) explanations are selected. Human
explanations are biased selections, rarely aiming to provide exhaustive causes
but rather picking one or two that are influenced by cognitive biases;
3) While probabilities hold importance, emphasizing statistical relationships
in explanations often falls short; causal explanations hold greater weight
for understanding events; 4) explanations are inherently social, involving a
transfer of knowledge within conversations or interactions, shaped by the
explainer’s understanding of the explainee’s beliefs. Overall, these stress that
explanations in Al transcend mere causal attribution; they’re contextually
nuanced, subject to selection and allow for interaction between explainer
and explainee.

Moreover, providing clear explanations for Al-driven decisions is crucial
for enhancing experts’ trust and ensuring successful adoption of these sys-
tems (Kotriwala et al. 2021). To generate clear explanations, designers should
understand the experts’ task flows and include them in validation of XAI
methods, which also need to be tailored for industrial data (Kotriwala et al.
2021).

METHODS

In this project, we applied a user-centered design approach to develop XAI
solutions. Using the framework of contextual inquiry to question and observe
users in their natural environment (Duda et al. 2020), field visits were car-
ried out to gather an in-depth understanding of the processes, the needs, and
the pain points of process operators. The insights gained were synthesized
into initial user requirements. Subsequently, a multidisciplinary team collab-
orated on functional prototypes that comprised of an explainable time series
forecasting model, and a dashboard connected to the model output, which
could be applied to both application domains. Two Temporal Fusion Trans-
former (TFT; Lim et al. 2021) architectures were used for forecasting two
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different variables in the two use cases, trained on historical data from each
plant. As TFTs inherently provide an overview of variable weights for local
explainability, the dashboard, which was deployed using Grafana, was able
to display feature importance and attention scores associated with each vari-
able (see Figure 1). Finally, the dashboard and its explainability components
were evaluated on-site with eight control room operators for UC1 (seven
male, one female), and six (all male) for UC2.

In our evaluation, three user-centric dependent measures were adopted;
1) forward simulatability, 2) subjective comparison, and, 3) subjective satis-
faction. These were combined with qualitative interviews. Such a combina-
tion was proved to be effective in evaluating the utility and satisfaction of
explanation methods. For a more detailed overview of the methodology, see
Brorsson et al. (2024). In this study, we focus on the qualitative data gathered
on site. All interviews were captured by video and audio. Notes taken during
the sessions were transferred into a shared digital workspace, analyzed and
categorized into various themes using thematic analysis (Braun and Clarke,
2006). During the analysis phase, recordings were also revisited by another
coder to further detail the identified themes.
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Figure 1: A schematic representation of the designed dashboard that was used in the
study. The dashboard contained four views. An overview window (a) which showed
the predicted time series graph considering the sensor data and the recovery profile for
the key process parameter. A precision-intervals view (b) which showed how often the
key performance parameter would lie within each interval. A feature-importance view
(c) which represented the sensor weight values and an on-demand representation view
(d) which visualized the time series data of all sensors for the time-period of interest
selected by the operator.

RESULTS AND DISCUSSION

This section presents the extent to which the designed explanations were
suited to the domain experts’ needs with respect to expectation alignment,
decision-making alignment, trust, and prediction accuracy. We have chosen
to focus on the qualitative data gathered in the interviews.
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Expectation Alignment

For both contexts, most participants misunderstood that the model adjusts
important features to improve the results on its own. A few participants
mistakenly believed that the model could impact the process directly by
adjusting reagents to improve capabilities (UC1) or adjusting the H-factor
(UC2).

Misunderstandings may arise when explanations insufficiently bridge this
gap between what the model’s capabilities are believed to be and what
the model is actually doing. Given the participants’ limited experience
with Al it is likely that their expectations exceeded the capabilities of the
models that were tested. Various automated control functions are preva-
lent in these process industries both in simpler forms such as automated
valves and more complex forms such as functions calculating and imple-
menting optimal dosages of a liquid. Participants were found to draw
parallels between existing control functions and the evaluated ML model,
indicating that expectations might be transferred from the former to the
latter.

In existing literature, researchers have found that users with high expecta-
tions exhibit over-reliance behavior and users in the neutral condition tend to
appropriately adjust their behavior (Mayer et al. 2006). Mismatches between
expectations and reality can result in user frustration, distrust, and disen-
gagement with the system (Meurisch et al. 2020). In addition, expectations
can influence how explanations are selected due to cognitive bias, as Miller
also highlights (2019). Therefore, it is needed to consider and manage these
expectations to create successful interactions with Al systems. In our case, it
is highly important to clarify that the model developed for testing only has
the capability to analyze and predict the process without acting upon it. Oth-
erwise, we may encounter passiveness caused by false over-reliance during
the interaction. We may also see induced fear of giving feedback based on
false assumptions that it will have a direct negative impact on the process.

Decision-Making Strategy Alignment

In both use cases, participants commonly spent a fair amount of time finding
and comparing different sensors to understand the prediction. Since not all
sensors could be displayed simultaneously on the screen, they had to locate
the relevant sensors first, check the values for a specific time step, remember
those values, and then scroll to compare them with other sensors. This process
is quite cumbersome for making comparisons within the current navigation
of the prototype. The interview results indicate that operators are strongly
influenced by their existing work practices. In both use cases, control room
operators rely on their control systems to monitor, analyze and act upon the
process. This has caused them to develop certain strategies which are influ-
enced by the systems they use. For example, operators commonly plot several
variables in one trend package, which allows them to compare various types
of sensor data and infer relationships between them in their current way of
working. Overall, these strategies involve monitoring a graphical representa-
tion of an overview of the whole process step that they are responsible for,
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and when specific information is needed, they interact with the system to
produce additional details regarding the sensors or components of interest.
Notably, while troubleshooting why the process key performance parame-
ter was progressing in a certain direction, operators rely on causal inference
(Miller, 2019), i.e. patterns in sensor values which, according to their exper-
tise of the process, are adopted as explanations for the deviations they are
observing.

Thus, to explain and understand the model forecast, the operators rely
on similar strategies of exploring sensor relationships and browsing sensor
data gained from their previous experience. This indicates that if we design
a system that can align with their decision-making models (Zohrevandi et al.
2023), it will bring great value to the users. However, operators’ individual
experience of the process and their unique toolkit of strategies might have a
great impact on what knowledge gaps they expect to be filled. This can make
it challenging to develop a generic interactive interface that could comply
with the wide range of strategies and experience levels that might exist within
a single working crew.

Trust Calibration

Trust is considered as fundamental element in the interactions between
human and automated systems. Without trust, users will not rely in auto-
mated systems, especially to conduct critical tasks (Rojat et al. 2021).
Our user tests have illuminated three key facets of fostering trust in Al
models.

First, the accuracy of the model forms the foundation for users to build
trust with the models (Yin et al. 2019). A few users mentioned that their trust
in the model would be reduced if the prediction was not in line with what
happened after the fact. This is in line with what Grice’s maxim of Quality
stating that information displayed on the explainer should be of high qual-
ity, accurate and well-grounded (Grice, 1975). Model performance provides
a foundation to assess the quality of the output of the model. This perfor-
mance must attain a level of proficiency that instils confidence in its ability to
deliver reliable predictions. Users’ willingness to entrust critical tasks to auto-
mated systems hinges on the assurance that these systems can consistently and
precisely fulfil their intended functions.

Second, aligning the model with the operators’ mental model can augment
trust. For example, one said if the dashboard enables comparison among dif-
ferent variables, learning and teaching, like what they are currently doing,
trust to the system would increase. When the model’s explanations resonate
with the variables that operators deem essential for predictions—even if these
variables do not align with the model’s internal considerations—it estab-
lishes a foundation for operators to assess the quality of predictions. Such
mental model alignment cultivates a sense of familiarity and comprehen-
sion, contributing significantly to the augmentation of trust in the automated
system.

Finally, meaningful feedback is crucial for trust. Participants mentioned
that it is important to be easy to give feedback and also be acknowledged
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about the effects of their feedback on the model. This indicates that inter-
active features should not only enable users to tailor information to their
needs but also allow them to influence the model. This fosters mutual under-
standing between humans and Al (Chander, 2018), empowering operators
and enhancing transparency. This supports Miller’s argument of explana-
tions as inherently being social, involving a transfer of knowledge within
conversations (2019).

Selection of Explanation Mechanism

Understanding what explanations are needed, which types of explanations
users can comprehend under time-pressure and the appropriate modalities
for the explanations are important aspects when designing XAI systems
for industrial uses. This section will present the findings related to these
questions.

Feature Importance Matrix & Sensor Attention (¢ & d in Figure 1)

The primary explanation mechanism used was a matrix-based visualization
of feature importance values (see ¢ in Figure 1), which is a popular post-
hoc and model-agnostic technique that quantifies the extent to which feature
inputs influence the model outputs (Munn and Pitman, 2022). The feature
importance was supported by detailed model attention for specific time steps
of each sensor (see d in Figure 1). The results show that for both use cases,
most users did not understand the sensor importance matrix at first glance.
But the feature importance matrix was found to guide users to explore values
for high-importance sensors first, similar to Shneiderman’s information seek-
ing mantra “Overview first, zoom and filter, then details-on-demand” (1996,
p. 2). However, a few challenges became apparent. Firstly, participants with
less knowledge about Al commonly misinterpreted important features as fac-
tors that were predicted to have a causal effect on the forecasted variable.
This aligns with how operators normally think of the process, as a set of
causal relationships between various variables. This has caused confusion as
to why Kappa was an important feature for forecasting Kappa (UC2). Some
participants mentioned that they understand importance matrix but do not
agree with what sensors the model prioritizes.

Secondly, it was challenging for participants to understand why a certain
feature importance score was calculated for a feature, even after browsing
individual sensor readings and the attention scores associated with impor-
tant time steps in the retrospective period which was marked as a grey zone
in the trend graph. A possible reason for this might be that people use combi-
nations of features and their underlying causal relationships when assessing
categories of objects (Rehder, 2006). Rehder (2006) demonstrates that peo-
ple use feature combinations to categorize objects, particularly when features
seem incompatible due to underlying causal mechanisms. Seen through the
lens of explainability, this implies that if the feature importance matrix would
mainly refer to sensors that align with what features are important for partic-
ipants when assessing the process, they would likely have a better foundation
for assessing the model output.
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Third, for UC1, meta-variables (i.e. exclusive to the model such as encoded
day of month) were included in the variables that the model accounted for
when making its forecast. These variables are not included in the process
operators normally work with. This led to the participants not understanding
why they were included in the model in the first place. Explanations need to
be tailored to the mental models of its viewers (Kulesza et al. 2013), and

meta-variables such as these can thus be inappropriate for users with less
ML experience (Liao et al. 2022).

Precision of Historical Predictions (b in Figure 1)

In both use cases, the quartiles used for representing forecast accuracy were
sometimes misinterpreted as acceptable thresholds of where the key process
variable (copper recovery or Kappa) should optimally stay in. Even after facil-
itators explained that this was not the case and the historical precision should
provide an indication of how probable the current forecast might be, partici-
pants, in general, did not use the precision indications for assessing the quality
of the explanation. This is in line with the findings reported by Miller that
people do not tend to assess explanation quality based on probability but
rather on usefulness, relevance, and causal behavior (2019, p. 45). However,
as noted by Dodd and Bradshaw (1980), explanations are interpreted accord-
ing to the intent of the systems they are associated with, indicating that if a
model output is unreliable or inaccurate, the user risks having reduced trust
in the explainer as well. This connects to the previous subsection on trust
where the accuracy of the model is stated as the foundation for building trust
with the system. Therefore, having some indication of precision or accuracy
might provide a foundation to calibrate trust not only for the model but also
for associated explainers.

Design Implications

Previous sections have discussed different human factors that influence
the selection of explainer mechanisms and interaction design, based
on our user study results. The following table summarizes key design
implications.

Many of these implications concern operators’ mental models and indi-
vidual differences. Here, we also want to highlight that the contexts play a
vital role in designing a suitable explainer solution for process operators. The
nature of the industrial process is highly dynamic; the time and effort required
from operators to tend to it varies greatly in turn. This, together with indi-
vidual differences in mental models, calls for dynamic forms of explainability
that can fill in knowledge gaps in a wide range of situations for individual dif-
ferences. To provide such forms of explainability, the interfaces should follow
Shneiderman’s information seeking mantra (1996) by providing an overview
of general explainability tailored to most individuals and situations and sup-
porting fluid interactions for operators to fill in their individual knowledge
gaps for the situation they are in (Chander et al. 2018).
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Table 1. A summary of design implications and connected human factor requirements.

Design implications Human factor requirements

Expectation alignment
Expectation alignment

Decision making strategies (mental
models) alignment

Clear indication of the model capabilities
Display model confidence or accuracy
Consider different explainer mechanisms
(e.g. causal effects) to fit different
purposes

Individual differences (Al competence,
experience etc.)

Provide an overview of crucial Decision making strategies (mental

information, then allow digging deeper
into details

models) alignment

Design interface that can allow users to
customize and navigate process data to

Decision making strategies (mental
models) alignment

match the current mental models of users

Individual differences (Al competence,
experience)

Trust calibration

Trust calibration

Provide meaningful feedback mechanism
that can take in feedback strategically
and improve the model

Limitations

The evaluations of this paper were carried out with limited and intended end
users, and not in their natural environment because of safety risks of inter-
fering with the industrial process. Instead, a separate system in a separate
room was used. In addition, participants were presented with all explain-
ers simultaneously during subjective comparison. Although this approach
enables insights into holistic usage, it may compromise fidelity in determining
which individual explainer is most beneficial for participant.

CONCLUSION

In this empirical study, we examined what explanations are needed for end
users in the process industry and what human factors should be consid-
ered when developing XAl Our key findings indicate that relying solely on
the method of feature importance will not suffice to deliver personalized
and situation-specific explanations as demanded by users. Designing XAl
for industries should involve studying potential users’ expectations of their
interactions with Al systems, considering their existing work behaviors and
mental models, prioritizing the development of highly accurate models, and
providing avenues for feedback to enhance trust. Overall, this research offers
empirical evidence from real-world industrial settings, highlighting the sig-
nificance of involving end users in the design and development of effective
XAI solutions.

Future work could investigate other types of explainer mechanisms and
how to design them for process industries. For instance, it could explore
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whether one or several mechanisms should be employed to offer explain-
ability to users in industrial settings and address the human factor needs
identified in this study.
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