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ABSTRACT

While human-agent interaction is intended to ease daily and critical burdens on human
operators, issues such as trust, lack of transparency, and system performance often
negatively impacts the process to yield sub-optimal outcomes. Here, we propose a
human-in-the-loop approach, in which users train an AI, as a potential avenue to rem-
edy this complex problem. We use Tetris® as a use case and require participants to
provide trial-by-trial inputs to train the AI model. Improvements in trust correlated with
increased satisfaction levels during the training process but not final AI performance.
Users’ preference for their trained AI, compared to a pre-trained AI, demonstrated
increased improvements in trust. Personality and AI literacy did not affect these rela-
tionships. Results suggest positive perceptions towards AI systems can be elicited
through psychological ownership pathways. We discuss how users’ involvement in
constructing the system may influence ownership giving rise to positive human-agent
interactions.

Keywords: Human-agent interaction, Human-in-the-loop, Psychological ownership, Trust
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INTRODUCTION

Research in human-agent interaction (HAI) has rapidly grown over recent
decades. However, there remain several fundamental problems related to the
integration of these two systems. Some users may be slow to trust or to adopt
new technology (Efendić et al., 2020) while others may become too reliant
and use technology when it is not optimal to do so (Vasconcelos et al., 2022).
At the same time, AI systems that aim to produce optimal outcomes and
purely follow data-driven rules can overwhelm or intimidate the user, leaving
the user distrustful towards the system and dissuaded to use it. Users may not
always understand what goes on “under the hood” of an AI system (Miller,
2023). Balancing the cost of verifying an AI’s decision with task complex-
ity may be important for overcoming overreliance (Vasconcelos et al., 2022).
However, to push the burden of adaptation on either human or AI alone
risks overwhelming the human, producing AI models that favor transparency
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over optimality and destabilize system performance (e.g., constantly adapt-
ing precisely tuned complex systems that were designed to operate within
specified performance ranges). HAI solutions must engender trust and end-
user acceptance, reduce AI system overreliance (or misuse), but not sacrifice
performance or stability of the AI system or push the burden of adaptation
onto any single component.

Here, we investigate a novel approach to address these issues by enabling
the end-user to play a role in the development and construction of the AI
system, with the caveat that this construction process has been scaffolded to
maintain AI performance within pre-specified boundaries. In other words,
the AI system is largely “pre-cooked” such that many parameters within the
system have been optimized for the task at hand while a few key parameters
are left blank for the end-user to fill. It is important to note that final system
performance is not completely invariant to the user and training is not an
illusion. Neither is the system simply learning the preferences of the user (e.g.,
recommender system). Rather, analogous to a pre-cooked meal kit, users who
follow laid-out instructions will have a largely predetermined outcome (e.g.,
like a tasty meal); users who deviate largely from it (overcook or leave out
the ingredients) could still alter system performance.

Humans’ role in interacting with their intelligent systems can positively
shape their post-adoption behaviors and attitudes towards those systems
(Delgosha & Hajiheydari, 2021; LaCroix et al., 2023). This is based on
the theory of Psychological Ownership (PO), in which individuals perceive
an object as “MINE”, eventually leading to satisfaction, commitment, and
post-adoption behaviors (Pierce et al., 1991). PO is a construct that describes
people and their perceptions of ownership to a material or immaterial item
(Pierce et al., 1991). Studied initially in organizational and consumer psy-
chology, PO develops through experienced control, intimate knowledge of
the object, and self-investment (Pierce et al., 1991). Increased PO has been
found to predict commitment (Han et al., 2010), user self-esteem (Lee &
Suh, 2015), and satisfaction (Lee & Suh, 2015). For example, in a study that
assessed users’ interactions with consumer robots, Delgosha and Hajiheydan
(2021) found that users’ perceived control with the robot and self-investment
in the robot predicted PO, suggesting that people who dedicate their time and
energy into a system that they perceive they can control shapes their percep-
tions of ownership. Furthermore, users’ measures of PO and trustworthiness
in their robots predicted users’ willingness to explore new technologies and
pay more attention to those systems (Delgosha & Hajiheydari, 2021). As
people are found to have an innate desire to possess, perceptions of owner-
ship emulate a symbolic extension to the self (Pierce et al., 1991). This in turn
engenders the endowment effect, or the idea that people place more psycho-
logical and economic value on the item they perceive ownership with (Thaler,
1980).

In a technology context, playing a part in constructing and carrying out
the actions of a technological system reduces uncertainty and improves pre-
dictability for the user, leading to positive post-adoption outcomes, such
as trust towards the system (Delgosha & Hajiheydari, 2021) and reuse of
the system (Lin et al., 2021). Prior work has shown that designing a robot,
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through customization, has an effect on intimate knowledge, self-investment,
and perceived control, leading to higher PO and higher levels of affective
trust (Lacroix et al., 2023). Other studies exploring human-technology inter-
actions have measured factors of perceived control through questionnaires
(Delgosha & Hajiheydari, 2021), levels of self-customizations in their robots
(Lacroix et al., 2023), and automated vs. manual manipulations of the system
(Jörling et al., 2019).

Individual traits have also been found to influence the relationship between
PO and post-adoption behaviors. Essig and Soparnot (2021) found that cer-
tain personality traits (i.e., extraversion) and their facets (e.g., those who
show altruism) from the Big Five Inventory (John et al., 1991) are related
to PO towards their company. A study that explored trust in AI and robots
found that openness and exposure to robots positively predicted trust, while
conscientiousness negatively predicted trust towards a robot in a trust game
(Oksanen et al., 2020). In a separate study, conscientiousness was positively
associated with perceived and actual technology use, while neuroticism had a
negative association with technology use (Barnett et al., 2015). Notably, these
relationships were not mediated by expressed intentions to use the system
(Barnett et al., 2015).

To our current knowledge, there are virtually no studies on the relation-
ship between PO and AI usage or acceptance. Given the relationship between
PO and post-adoption behaviors in other domains, we believe that the devel-
opment of PO from training an AI system can provide an alternative path for
user satisfaction, trust, and re-use. Due to the paucity of research in this area,
we also believe such work can address a critical scientific gap as AI tools
become an increasingly pervasive presence in our everyday lives. Here, we
elicit the antecedent factors of PO by allowing users to train their own AI. By
giving users a more active role in shaping the system’s decisions, we predict
that users will be more satisfied with the system and will prefer using their
system rather than a pre-trained system. We also investigate how individual
differences such as AI literacy (Pinski & Benlian, 2023) and constructs of the
Big Five personality traits (John et al., 1991) relate to these relationships.

1) How does being in the loop affect end-users’ attitudes post-adoption
behaviors towards pre-cooked systems?

2) Do individual differences (e.g., AI Literacy and Big 5) moderate this
relationship?

METHODS

Participants

This study (ARL 23-054) was approved by and conducted in compliance with
the U.S. Army Research Laboratory (ARL) accredited Institutional Review
Board (IRB) and Human Research Protection Program (HRPP). All partici-
pants were 18 years of age or older, fluent in English, had corrected to normal
vision, no color blindness, and no significant brain trauma/injuries in the last
three months. Furthermore, because this was an online study, participants
were required to meet certain system requirements to participate in the study
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(e.g., did not have a Mac). Participants were recruited via Prolific (Prolific,
2023) and were compensated $10.00 for completing the pre-screener and an
additional $30.00 for completing the main study. In both the pre-screener
and main study, participants were given information sheets that described
the study with any associated risks or benefits.

Data from up to 370 participants in total was collected for the Horizontal
AI and Vertical AI training conditions, examined in this paper. Consider-
ing the Horizontal AI condition, data from 355 participants, including 99
females, with mean (M) and ± standard deviation (SD) of age in years (M =
37.06, SD = 10.05), and 256 males (M = 36.62, SD = 8.73) was included
in analyses. Data from the Vertical AI condition consisted of data from
349 participants, including 98 females (M = 37.27, SD = 10.01) and 251
males (M = 36.64, SD = 8.74). Data was excluded from participants with
incomplete data sets for these conditions.

Procedure

Potential participants first completed a prescreener that determined their eli-
gibility and contained the following questionnaires: AI Literacy Scale (Pinski
& Benlian, 2023), Big Five Inventory (BFI) (John et al., 1991), Flexible Think-
ing in Learning Scale (Barak & Levenberg, 2016), Mental Rotation Test
(Vandenberg & Kuse, 1978), and a short gaming inventory. Then, partici-
pants played a short trial of classic Tetris®. Eligible participants with verified
data were invited to volunteer for the main study.

For the main study, participants answered demographic and experience
questionnaires related to AI and technology use. Then, participants com-
pleted six conditions of the game Tetris® and answered some questions
regarding their/the AI’s performance and strategies. After completing all game
conditions, participants completed the Intrinsic Motivation Inventory (Ryan,
1982) and the Depression, Anxiety, and Stress Scale (Lovibond & Lovibond,
2011). For the purposes of this paper, analyses explored four of the conditions
and four questionnaires, described below.

AI Training Conditions

Participants completed the Horizontal AI and Vertical AI conditions. Prior
to these conditions, participants completed Horizontal and Vertical Baseline
conditions, respectively, to familiarize themselves with the game without the
AI (see Figure 1). Each condition took 10 minutes. For the Horizontal Base-
line and Horizontal AI condition, the game consisted of classic Tetris® where
10 continuous blocks must be stacked horizontally to clear a row and earn
points. For the Vertical Baseline and Vertical AI conditions, this relationship
was flipped and 10 continuous blocks had to be stacked vertically to clear
that portion of a column and earn points. This was a novel and more dif-
ficult way to play Tetris® which required participants to adapt to the new
parameters of the game quickly to maximize performance. In each condition,
participants’ goal was to maximize performance by clearing as many rows
(or columns) as possible.
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In both AI training conditions, participants had a maximum of 20 minutes
to train each AI. Participants were able to preview their AI’s performance
as desired throughout training by speeding up the game and letting the AI
play on its own. This capability could be toggled on or off by the participant
with a single key press. At the end of the 20 minutes or when the participant
indicated that they were ready, participants were able to submit their trained
AI.

Figure 1: A participant’s view of the horizontal baseline condition of Tetris®.

TAMER AI Assessment

The AI algorithm used for this work was ‘Training an Agent Manually via
Evaluative Reinforcement (TAMER)’ originally designed by Knox and Stone
(2008). TAMER is a framework for enabling humans to rapidly adapt an
untrained AI system; however, in order for the “untrained” system to adapt
within a limited number of human trials, a significant amount of initial
knowledge must be imparted in the system. In the original work, which
utilized Tetris® as the testbed, this involved a highly optimized, and pre-
computed, feature vector for the task (e.g., Horizontal Tetris®) (Knox &
Stone, 2008). This feature engineering significantly reduces the amount of
“free parameters” in the system that must be adapted by the end-user, thus
reducing the amount of learning required and, at the same time, reducing the
performance variability of the final trained system. Here, we use a variant
of the original feature representation used by Knox and Stone (2008) and
introduced by Bertsekas and Tsitsiklis (1996). In total, there were 47 free
parameters of the system, which were all initialized to 0 prior to training.
We argue this approach creates a “pre-cooked” system in which the AI was,
essentially, optimized for the task at hand but required user interaction to
finalize its weight vector.

To train the AI, the users observed each move, or piece placement, per-
formed by the system. At the end of each move, while the next move was
being performed, the users had the option to ENCOURAGE or DISCOUR-
AGE the system by pressing an appropriate key. This feedback was applied
to the previous move and used to perform a single-trial gradient update of
the AI weights (Knox & Stone, 2008). Notably, the precomputed feature vec-
tor used for this approach was optimized for horizontal Tetris® and, thus,
suboptimal for the vertical version.
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Once the AI was trained, the participants submitted the final weights for
evaluation. These weights were used offline in post-processing to evaluate
the performance of each participant’s trained AI. This evaluation process
included allowing each trained AI instance to play the game (horizontal
or vertical) for 1000 randomly generated pieces. The cumulative perfor-
mance of each AI instance was used to provide a numerical estimate of
the quality of each AI solution. Naturally, there are many ways to eval-
uate an individual’s (or AI’s) play at Tetris®. For the current work we
used points per piece, or the average number of points per piece across
all games played. During the baseline conditions, if a game ended before
time was up, a new game automatically started. During the AI evaluation,
if a game ended before the limit of 1000 pieces was met, a new game
started.

Questionnaires

Here, questionnaires that are used for analyses will be described:
Initial Experience Questions. These questions were designed to understand

the participant’s familiarity and experience with Tetris overall, their experi-
ence with training AI, how comfortable they are with technology, and how
trustworthy they are with technology and AI.

AI Literacy Scale. This 16-item scale is used to measure subjective AI liter-
acy (Pinski & Benlian, 2023). Responses are provided along a 7-point Likert
scale (strongly disagree to strongly agree). The subscale Overall AI Literacy
was calculated as the average of the last three items.

Big Five Inventory. This 44-item questionnaire was designed to mea-
sure the Big Five (BFI) personality dimensions (openness, conscientiousness,
extraversion, agreeableness, and neuroticism) along a five-point Likert scale.
Appropriate items were reverse scored, and a final total derived for each
subscale (John et al., 1991).

Post Condition Questions. After each AI training condition, participants
were asked to respond to questions relating their experience to training their
AI, their AI’s performance, their trust in their AI, and whether they would
choose their AI over a pre-trained AI. This last question acted as our proxy
for PO.

RESULTS

From 370 participants collected, 355 participants were pulled from the larger
pool of data for the Horizontal AI condition (36.74 ± 9.10, Female = 99)
and 349 for the Vertical AI condition (36.81 ± 9.10, Female = 98) to mea-
sure improvements in trust, satisfaction, preference, and score. Data analyses
were done in R using the stats package (R Core Team, 2023). For parametric
tests, homogeneity of variance was measured using Levene’s test. Normality is
robust against those with sample sizes of 30 or more (Ghasemi & Zahediasl,
2012). Outliers, defined as three standard deviations from the mean, were
removed before analyses. Three data points were identified as outliers from
the Horizontal AI condition for this analysis.
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Figure 2: Satisfaction as a function of improvements in trust in the A. Horizontal AI
condition and B. Vertical AI condition.

Improvements in Trust and User Satisfaction

To measure improvements in trust, the difference between participants’ ini-
tial trust in AI (“How trustworthy do you find AI?”) and the trust in the
AI system they trained, which was asked after each condition (Horizontal
AI and Vertical AI) pertaining to the AI they trained (“How trustworthy is
your AI?”), were calculated. Both questions were on a Likert scale from 1 to
5, with a higher difference between the responses indicating increased trust
in the system. Similarly, satisfaction in the trained AI was measured on a
Likert scale from 1 to 5 and was asked after each condition (“How satis-
fied are you with the final performance of your Tetris AI?”) in which higher
responses indicated higher levels of satisfaction. Pearson’s correlation was run
to evaluate the correlation between improvements in trust and self-reported
satisfaction in both conditions (Horizontal AI and Vertical AI). Satisfaction
in the system increased as people increasingly trusted the system they trained
in both the Horizontal AI condition (r(350) = .50, p <.001) and the Vertical
AI condition (r(347) = .66, p <.001) (see Figure 2).

User Preference

To evaluate users’ preference of AI, we had asked, “Given the choice, would
you choose to use your AI or a pre-trained AI?”, and participants selected
either “My AI” or “Pre-trained AI”. This question acted as our proxy for
PO. The Welch’s t-test was run to compare the mean improvement in trust
between the preference types in each condition. Across both conditions, those
who preferred their own AI after training had a higher average improvement
in trust (Horizontal AI: Mean = 1.24, SD = 1.30; Vertical AI: Mean = 0.70,
SD = 1.57) as compared to those who preferred the pre-trained system
(Horizontal AI: Mean = 0.53, SD = 1.38; Vertical AI: Mean = −0.41,
SD = 1.42) in both the Horizontal AI condition (t(272) = 4.81, p <.001) and
Vertical AI condition (t(120.07) = −5.68, p <.001) (see Figure 3). Notably,
improvements of trust on average decreased for those who preferred the pre-
trained system in the Vertical AI condition. Supplementary analyses reveal
that those who preferred their own AI and those who preferred the pre-
trained AI did not have differences in the number of responses, average
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score, response rate, or response time. This suggests that both groups had
participated in the training process similarly.

Figure 3: Bar plots in the A. Horizontal AI condition and B. Vertical AI condition showing
improvements in trust between those who preferred the pre-trained system and those
who preferred their own AI system.

Improvements in Trust and Score

A Pearson’s correlation was used to run improvements in trust and score,
defined as the average number of points earned per piece across all games.
When looking at improvements in trust and score, we find that score does not
change as a function of improved trust (see Figure 4). This suggests that even
if people increased their trust in the system, it does not actually correlate with
how well the system performed. We also found no relationship between an
individual’s ability to play Tetris® measured by their score during the Baseline
task and the score of their final AI (e.g., for Horizontal Tetris® r(340) = .08,
p > .14 and for Vertical Tetris® r(339) = .02, p > .72).

Figure 4: Scatter plots in the A. Horizontal AI condition and B. Vertical AI condition
showing a non-significant relationship between improvements in trust and score.
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Individual Differences

327 participants from the Horizontal AI condition with mean (M) and± stan-
dard deviation (SD) in years (M = 36.49, SD = 9.18, Female = 95) and
321 from the Vertical AI condition, (M = 36.51, SD = 9.19, Female = 94)
were pulled to measure the effects of AI literacy. 329 participants from the
Horizontal AI condition (M = 36.47, SD = 9.15, Female = 95) and 323 par-
ticipants from the Vertical AI condition, including 94 females with mean (M)
and ± standard deviation (SD) in years (M = 36.53, SD = 9.17) were pulled
to measure effects of the BFI. Before running analyses, we first looked at pos-
sible covariates of age, gender, and Tetris® experience (“How many times
have you approximately played Tetris in your lifetime?”) in improvements
of trust, satisfaction, and score. We did not find any statistically significant
patterns or findings. When looking at the effects of the BFI and AI Liter-
acy on satisfaction, preference, and performance, we did not find any linear
relationships or statistically significant patterns.

DISCUSSION

The aim of our study was to look at end-users’ preferences, satisfaction, and
performance as it relates to trust when they are “in the loop” (i.e., have an
invested role in training the AI system) and explore individual differences that
may influence these relationships. Our results show that with improvements
in trust, people were more likely to report higher levels of satisfaction with
their trained AI. Additionally, those who preferred their own AI over the pre-
trained system showed increased improvements in trust. These results suggest
that the human-in-the-loop approach, through perceived control of the user,
can positively change their perceptions of their system.

Both conditions used in our study were built to be robust against any mod-
ifications to the system aside from extreme user actions, however, the AI
was optimized for the Horizontal AI condition and not as optimized for the
Vertical AI condition. Patterns with preference, satisfaction, and system per-
formance in relation to improvements in trust were consistent across both
conditions. In the Vertical condition, though, those who preferred the pre-
trained AI had a decreased improvement in trust on average. We did not find
any differences in response rate, response time, or average score between the
two groups. Given that both groups participated in the construction of the
system in similar ways, we predict that the pre-trained group may possess
individual differences that may potentially prevent facilitation of user-system
interactions. Future work should be dedicated to identifying these individual
differences.

In our study, improvements in trust did not predict system performance.
This result suggests that how well the system performed did not necessarily
improve trust. This speaks to the design of our testbed, which was intention-
ally developed to be relatively invariant to performance outcomes aside from
extreme disruptive actions by the user. As previously stated, as the number
of free parameters in a system increases, so too does the time (or trial) invest-
ment needed to train the system increase and the range of potential variants
of the system increase (e.g., a high-dimensional, untrained AI system could
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learn any one of a number of underlying functions). Conversely, as the num-
ber of free parameters decreases, so does the required time investment for
training. As a result, the performance of the system becomes, successively,
constrained. To ensure that training could converge within the amount of
time a human would reasonably devote to the task, thus, required a system
with a high amount of initial knowledge and a low number of free parameters.
We argue, therefore, that allowing a human in the loop for any such system
can potentially help the human (via investment and PO) without significantly
altering system performance.

In the current work, this pre-cooked approach did not compromise either
the user or the system. In other words, the user did not have to change in order
to work with the system; similarly, the system did not have to bend its per-
formance or approach to the user (e.g., transparent or explainable models).
Pre-cooking in this way enabled the final system to largely perform within
tight bounds across users, but still enabled users to experience PO in the pro-
cess. Naturally, though, these results are limited to the current testbed and
warrant further research in more immersive situations where the strength of
these psychological bonds can be formally tested.

We were not able to find effects of AI literacy level and personality traits
from the Big 5 to satisfaction, preference, or average score. This suggests that
relationships between trust and perception towards technology through con-
structing an AI is relatively stable, at least across levels of AI literacy and
personality traits—even those who may not know much about AI systems
can still use the Tetris® system equally well and feel satisfied after training it.
This is in contrast to other work that have found links to personality dimen-
sions and PO (Essig & Soparnot, 2021). We believe these differences are due
to not having direct measurements of PO. Future work aims to look at other
individual differences that have been found to relate to PO such as regu-
latory focus and intrinsic motivation (Delle et al., 2022; Dai et al., 2021),
materialism (Jami et al., 2021), emotional intelligence (Kaur et al., 2013),
and the extent to which people associate what they own as themselves (i.e.,
“mine-me” sensitivity) (Jami et al., 2021). Additionally, some traits may be
situational and based on the target of ownership or the situation at hand.

Overall, findings indicated users’ trust in the AI increased with their
reported satisfaction in the system. Increased trust was further linked to pre-
ferring their own AI to a pre-trained AI. It is important to note that increased
trust did not significantly correlate with system performance. Thus, this link
to trust is stronger when considering their personal preference and investment
in the system they trained, suggesting an underlying PO mechanism. This is
further illustrated when considering those who preferred the pre-trained sys-
tem over their own. Improvements in trust on average decreased for those
who preferred the pre-trained system in the Vertical AI condition. This sug-
gests that lacking attachment or underlying PO may be a detriment to trust
across system interactions. Furthermore, supplementary analyses revealed
that those who preferred their own AI and those who preferred the pre-
trained AI did not have differences in the number of responses, average score,
response rate, or response time. This suggests that both groups had partic-
ipated in the training process similarly and therefore their preference for
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system may drive trust. This is further underscored by the non-significant
relationship to AI literacy and BFI, indicating that we did not find any
individual factors driving this relationship at this time beyond their system
preference.

Based on our results, we assert that training a system is one way that
users can be a part of the system’s execution and increase trust and future
investment in that system. As this elicits psychological bonds such as satis-
faction with the system and the preference to use the system they designed,
our results suggest a form of ownership between the user and system at play.
These results have broader design considerations. Designers of technology
can provide useful features that allow for partial user control, such as person-
alized and customizable interfaces or guiding users to understand and modify
the inner workings of the system. We also champion the use of pre-cooked
systems, which offer a potential solution of enabling users to help train an
AI system while still allowing the system to perform within predetermined
margins.

There are limitations to this study. First, because we do not have a
condition where participants rely completely on a pre-trained AI without
interaction, we cannot claim conclusively that these emergent relationships
are a result of training an AI system. Future work should compare these met-
rics to a condition in which participants worked with an AI that they did not
train. Future work should also include other measures that are known to reli-
ably measure PO such as questionnaires and its link to technology. This work
offers a potential solution on how the integration of humans and AI facili-
tates effective and positive interactions. By bringing together data optimized
designs and intentional user execution, we can promote trust, satisfaction,
and continued usage through self-investment in the system.
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