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ABSTRACT

In recent years, the market for lightweight wearable devices for eye-, ear-, and wrist-
worn has grown rapidly. For these lightweight wearable devices, comfort directly
impacts consumer adoption. However, most of the existing literature on the comfort
of wearable devices have focused on wearable computers that are large in size and
weight, and there is still a lack of comprehensive insights for approaches to assess the
comfort of lightweight wearable devices. The present study reviewed existing research
on the comfort of lightweight wearable devices, discussed the characteristics and lim-
itations of current comfort assessment approaches, and provided feasible directions
for foreseeable more extensive comfort assessment research.
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INTRODUCTION

The size of the global wearable devices market has grown steadily in recent
years and is forecast to expand at a compound annual growth rate (CAGR)
of 15%-20% over the next five years. Among all types of consumer-oriented
wearable devices, the wrist-worn and ear-worn product segments dominate
the current global industry. Eye-worn wearable devices are also viewed as a
product segment with rapid growth potential due to its expanding applica-
tions in the multimedia industry. For these types of wearable devices, comfort
is one of the major influencing factors for consumers to make purchas-
ing decisions. Therefore, comfort assessment of eye-, ear-, and wrist-worn
wearable devices can help to identify users’ comfort expectations, discover
deficiencies in current designs, and improve the ergonomics of products.

Unfortunately, research in this area is not well developed. Most of the
existing comfort assessment approaches for wearable devices originated from
the early development of wearable technology, and most of the assess-
ment objects are wearable computers with large volume and weight (Bodine
and Gemperle, 2003; Knight et al., 2006). With the rapid development of
lightweight wearable devices and their applications in recent years, academics
have mostly focused on the prospects of their applications in health care
(Dunn et al., 2018) and industrial fields (Svertoka et al., 2021), with little
further research on the comfort of consumer products. However, as the phys-
ical image of wearable devices changes from bulky helmets and weighted
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backpacks to relatively compact forms such as wristbands, earphones, and
glasses, it is doubtful whether comfort assessment approaches are still valid.
On the one hand, there are inherent differences in sensory acuity and comfort
thresholds in different anatomical regions of the human body (Franz et al.,
2012). On the other hand, the feasibility and validity of assessment tools in
different body parts and wearing scenarios need to be revalidated.

Therefore, this study will explore comfort assessment approaches for
eye-, ear-, and wrist-worn lightweight wearable devices. We first summarized
the current commercially available lightweight wearable products, and dis-
cussed the factors influencing the comfort of these wearable devices. Then, we
reviewed existing comfort studies of lightweight wearable devices, analysed
the characteristics and limitations of existing comfort assessment approaches
applied to lightweight wearable devices, and provided feasible directions for
the development of more comprehensive lightweight wearable device comfort
assessment.

LIGHTWEIGHT WEARABLE DEVICES

Wearable devices are advanced sensors and computing technologies that can
be worn on the body in everyday life (Jacobs et al., 2019). While the scope of
wearables as delineated in different studies may vary, some key characteris-
tics are generally recognized, such as unrestrictive / hands-free, controllable,
mobility, and unmonopolizing (Borowski-Beszta and Polasik, 2020; ÇiÇek,
2015), which emphasize the liberation for the user’s movement and attention.
According to application areas, wearables can be broadly categorized into
assistive, workplace, healthcare, and consumer products (Chatterjee et al.,
2016). This study focuses on three of the more promising market segments
in consumer products, also known as eye-, ear-, and wrist-worn wearable
devices. These devices usually add new and expanded features to the tradi-
tional products. It should be noted that VR headsets are not included in this
study because of their conflict with mobility and unmonopolizing. Repre-
sentative products currently on the market and their attributes are shown
in Table 1. All information in the table is taken from the product’s official
website.

Table 1. Representative products and their attributes.

Existing Products Segmentation Attributes Weight(g) Size(mm)

Eye-worn (W*H of the frame)
Epson Moverio BT-40 AR glasses, wired connection 95 194*41
Dream Glasses Flow AR glasses, wired connection 59 160*50
Xreal air2 AR glasses, wired connection 72 148*51.4
Ray-Ban Meta Headliner smart audio-video glasses, wireless 49.2 147.5*49.2
Snap Inc. Spectacles 3 smart audio-video glasses, wireless 56.5 153*47
Amazon echo frames 3 smart audio glasses, wireless 37.6 147*55
Ear-worn
Airpods Pro 2 in-ear, earbuds 5.3*2 30.9*21.8*24.0
HUAWEI FreeBuds 4 semi-in-ear, earbuds 4.1*2 41.4*16.8*18.5

(Continued)
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Table 1. Continued

Existing Products Segmentation Attributes Weight(g) Size(mm)

Sony LinkBuds open-ear, air condition, earbuds 4.1*2 /
Cleer ARC II sport open-ear, air condition, ear hook 14*2 56.56*44.4*11.2
SHOKZ OpenRun Pro open-ear, bone conduction, ear hook 29 /
Earsopen SS900 open-ear, bone conduction, ear clip 7.5*2 30.1*29.7*26.5
Wrist-worn (Strap excluded)
Apple Watch Ultra 2 smart watches 61.4 49*44*14.4
Huawei watch 4 smart watches 48 46.2*46.2*10.9
Gamin Forerunner 965 smart watches 53 47.2*47.2*13.2
Huawei Band 8 wrist bands 14 43.45*24.54*8.99
Fitbit charge 6 wrist bands 15 38.7*18.6*11.7

Eye-worn wearable devices mainly contain AR glasses, smart audio-video
glasses and smart audio glasses. AR glasses need to be connected to acces-
sories or terminals via data cables to be used for short periods of time in
scenarios such as movie watching and gaming. Some of the glasses may be
equipped with blackout lenses and generally weighmore. The latter two types
of glasses usually support longer periods of wireless use in conjunction with a
charging case. Of these, the smart audio glasses are the lightest, only slightly
heavier than regular sunglasses.

There are many sub-categories of ear-worn wearable devices, the most
common of which are closed earbuds, which contain both in-ear and semi-
in-ear types. Open headphones contain both air conduction and bone con-
duction technology principles. Air conduction headphones contain earbuds
with open rings and ear hooks that separate the left and right ears, with the
ear hooks being heavier. Bone conduction headphones are mostly ear hooks
that connect the left and right ears via the back of the head, except for Earp-
son’s ear clips, which is currently the only “true wireless” bone conduction
headphones that have independent left and right ears, and thus the weight
can be greatly reduced.

Wrist-worn wearable devices mainly consist of smart watches and wrist
bands. The dial of smart watches usually has a relatively large weight and is
round or square in shape. The dial of wrist bands is usually light in weight
and rectangular in shape.

FACTORS INFLUENCING COMFORT OF WEARABLE DEVICES

Comfort can be both a physical sensation and a psychological state, and its
meaning is related to both “relaxation” and “absence of pain”. In some stud-
ies, comfort has been defined as the absence of discomfort, i.e., unaware of
negative feelings such as discomfort, fatigue, or pain (Kölsch et al., 2003).
Another definition considers comfort to be a positive state that sets off
positive emotional feelings (Pearson, 2009).

There are many factors that affect the user’s comfort perception of wear-
able devices, which can be summarized from four aspects: the physical
attributes of the product, intrinsic human factors, external environmental
factors, and use scene and tasks. The physical attributes of the product
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include weight distribution, shape, contact area with the human body, mate-
rial softness, hardness, breathability and thermal conductivity (Chiu et al.,
2014; Park et al., 2019; Shimura et al., 2023). Intrinsic human factors
include multi-channel information feedback, perceptual acuity of different
body parts, variability in body size, and subjective cognitive bias (de Korte
et al., 2012; Franz et al., 2012; Fu and Luximon, 2020). External environ-
mental factors mainly include temperature, relative humidity, and wind speed
(Dec et al., 2018). The use scene and task factors refer to the characteristics
of the physical activities and tasks performed by the user while wearing the
device (Ellegast et al., 2012; Groenesteijn et al., 2012). For example, the com-
fort requirements and feelings of the user may be different for office work and
running.

COMFORT STUDY OF LIGHTWEIGHT WEARABLE DEVICES

Early studies on the comfort of wearable devices focused on devices that are
large in size and weight, such as head-mounted display (HMD) and wearable
computers. An important contribution was made by the series of studies by
Knight et al. who proposed the comfort rating scales (CRS) for wearable com-
puters, which assesses six dimensions: emotion, attachment, harm, perceived
change, movement, and anxiety (Knight and Baber, 2005). Follow-up stud-
ies have also proposed the wearability levels for wearable computer systems
by combining 1) heart rate, Borg RPE and CR-10 scales for assessing energy
cost and fatigue; 2) the REBA method and RULA scale for assessing posture
action; with 3) the CRS scale (Knight et al., 2006; Knight and Baber, 2007).
However, these methods and criteria are not fully applicable to lightweight
wearable devices. In recent years, related research fields have begun to focus
on lightweight wearable devices, and we have compiled 12 comfort studies
for eye-, ear-, and wrist-worn products, with specific experimental designs
and main contributions shown in Table 2.

Current comfort studies of eye-worn wearable devices generally focus on
the effects of weight and design type. Comfort studies of ear-worn wearable
devices are particularly concerned with the inclusiveness of morphological
differences in human ear, in addition to the impact of design type. Due to
the great application potential of wrist-worn wearable devices in multiple
domains, related comfort studies are often used to assess the user’s acceptabil-
ity in specific use scenarios rather than exploring the factors that influence
user’s comfort perception.

The assessment indicators used in the current comfort studies of
lightweight wearable devices are, in descending order of frequency: local or
overall comfort/discomfort, pressure-related sensations, pain, muscle fatigue,
fit and fixation, ease of use, etc. The most commonly used measurements
are the Likert scale designed by each study for its own indicators, followed
by modified versions of the well-established CRS scale and the Borg CR-10
scale. In the heavily used self-designed Likert scales, each indicator assessed
usually has no sub-dimensions and is measured by only 1–2 two items that
have not been rigorously validated. In addition, all of the measurements men-
tioned above are subjective assessments, and only very few studies have used
objective measurements such as electromyogram (EMG) (Chang et al., 2018),
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heart rate (Smith et al., 2021), pressure gauge (Yan et al., 2022), and REBA
method (Cancela et al., 2014).

In terms of task design, most of the comfort studies of lightweight wearable
devices have used specific laboratory-controlled tasks. For example, studies
of eye-worn wearable devices commonly used static tasks (e.g., video view-
ing), and only one study evaluated the comfort perception in a dynamic work
scenario (Smith et al., 2021). The tasks in the studies of ear-worn wearable
devices involved multiple use scenarios such as office work, exercise, and
sleep, but only one of these was used in each study. More unusually, a study
evaluating the acceptability of wrist-worn wearable devices was not con-
ducted in a controlled laboratory environment, but rather collected comfort
feelings from 7 consecutive days of uninterrupted wear (McNamara et al.,
2016). This experimental design allows for the most realistic discomfort feed-
back to be collected as comprehensively as possible, which is conducive to the
improvements in the user experience of the product.

DISCUSSION

After analysing the existing comfort studies for lightweight wearable devices,
some limitations of current comfort assessment approaches are identified,
and corresponding directions for development are suggested.

Develop Refined Subjective Assessment Tools

The only established comfort assessment scale for wearable devices is the CRS
scale (Knight and Baber, 2005), which assesses the perception of emotional,
tactile, and motor dimensions, but lacks attention to thermal comfort and
stability. The Borg CR-10 scale (Borg and Borg, 2002), which is also widely
used, is essentially a scaling methodology describing category-ratio rather
than a detailed assessment for comfort. Those self-designed scales usually just
incorporate all the indicators of concern rather than designing the indicator
structure from a holistic perspective. In addition, all of the scales mentioned
above commonly assess a particular comfort indicator/dimension with only
one items, which resulted in weaker reliability of the scales.

Therefore, there is a need to develop refined subjective assessment tools
for lightweight wearable devices. One idea to consider is to build a mul-
tilevel structure of comfort indicators from top to bottom, encompassing
comfort dimensions as comprehensively as possible and designing the scale
items from sub-levels so that each comfort dimension can be assessed by
multiple items. Comfort dimensions and scale items can come from profes-
sionals’ brainstorming (Knight and Baber, 2005), consumers’ review feedback
(Song et al., 2020), or relevant research findings from other fields. For exam-
ple, a series of sensory descriptors often used in fabric/garment comfort
research, including tight, sticky, itchy, heavy, cold, scratchy, etc. (Kaplan and
Okur, 2012). In terms of scale forms, in addition to Likert scales, Visual
Analogue Scale (VAS), Numeric Rating Scale (NRS), and Verbal Rating Scale
(VRS) are equally available and are capable of assessing discomfort ranging
from none to severe (Pearson, 2009).
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Combine Subjective Assessment and Objective Indicators

Comfort can be both a physical sensation and a psychological state. This
suggests that comfort assessment can either be derived through subjective
self-reporting or be reflected by objective physical or physiological signals.
However, the latter is rarely used in current comfort studies for lightweight
wearable devices.

In addition to EMG (Chang et al., 2018), pressure (Yan et al., 2022) and
heart rate (Smith et al., 2021), which have already been tried, there are many
physiological signals worth exploring. For example, electrodermal activity
(EDA) that reflects sweat gland secretion on the surface of the skin may
be used for thermal comfort assessment (Mansi et al., 2022); eye tracking
that reflects visual fatigue may be used for comfort assessment of eye-worn
wearable devices (Souchet et al., 2022); electroencephalography (EEG) that
reflects emotional reflections, thermal comfort, and fatigue through a vari-
ety of signal signatures has even more potential for development (Frey et al.,
2015; Mansi et al., 2022; Peng et al., 2022).

However, it needs to be acknowledged that objective indicators do present
greater difficulties in the comfort assessment of lightweight wearable devices.
First, customized measurement devices need to be developed, such as sensor
probes or patches of different sizes and shapes (Yan et al., 2022). Second,
physiological signals are susceptible to noise interference, leading to higher
difficulties in experimental design and data analysis. Finally, it is easy to get
stuck when constructing the relationship between objective indicators and
subjective assessment, because human subjective perception is usually not as
sensitive as physiological signals and is easily influenced by external factors.

Design Customized Scenario-Based Assessment Approaches

Most of the current comfort studies of lightweight wearable devices are
conducted in controlled laboratory environments. Compared with letting
participants experience the device freely in real life, this approach can elim-
inate the interference of irrelevant factors as much as possible, but it also
makes the assessment results susceptible to the influence of experimental
tasks. Whether the task design in the comfort assessment approach is in line
with the high-frequency use scenarios of the product and whether it can com-
prehensively reflect the situations that are prone to discomfort is directly
related to the validity and practical value of the assessment approach.

Different lightweight wearable devices have different concerns in comfort
assessment. First, each product has its specific high-frequency use scenarios.
For example, eye-worn wearable devices usually focus on visual tasks, while
ear- and wrist-worn wearable devices need to focus on motion scenarios. Sec-
ond, there are differences in the weighting of comfort dimensions for each
product. For example, ear-worn wearables focus more on the tactile dimen-
sion of comfort, while eye-worn wearables need to pay extra attention to
visual comfort. Finally, there is often a correlation between use scenarios and
comfort dimensions. For example, stability is more important in sports sce-
narios, whereas the pressure perception accumulated during prolonged wear
in office scenarios may be more prominent.
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CONCLUSION

Comfort is one of the most important factors influencing consumers’ pur-
chase intentions for eye-, ear-, and wrist-worn lightweight wearable devices,
but the research on comfort assessment for such devices is far from adequate.
Based on a review of previous studies, this study appraised the limitations of
existing comfort assessment approaches when applied to lightweight wear-
able devices, and in this regard provided suggestions for the development
of subjective assessment tools, the adoption of objective indicators, and
experimental designs.
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