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ABSTRACT

In this study, a novel method was developed to automatically construct a virtual
space with a high degree of freedom of expression. The constructed virtual space
was designed to reflect the spatial shape of the real space and the arrangement of
objects. First, the global shape of the interior space was used to design a dataset for
extracting the spatial features of the real space by three-dimensional (3D) scanning
of the real space and using a PointNet-based autoencoder. The dataset consisted of
the point cloud data of a rectangular 3D object that was a simple imitation of a room
in real space and focused on two items, namely the number of input points and the
number of data points. The results of the autoencoder restoration indicate that spatial
feature extraction can be performed when the number of data is 5000 or more.
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INTRODUCTION

Extended reality (XR) technologies, such as virtual reality (VR) and mixed
reality (MR), have attracted considerable attention. However, their use in
arbitrary locations is hindered by the surrounding environment and the
limited range of motions (Ishizaka et al., 2018). Because MR has fewer
restrictions on the range of operation, MR is used in specific situations in
which virtual objects or digital information are superimposed onto a real
space. Additionally, virtual space creation involves many processes, render-
ing generalization difficult. Therefore, the development of technology that
can automatically construct a virtual space with a high degree of freedom of
expression, such as tilting or expanding the space while allowing the user to
see the surrounding environment, is critical.

Generally, three-dimensional (3D) objects are used to represent virtual
spaces, such as mesh data consisting of points and surfaces. With 3D mea-
surement devices such as LIDAR becoming increasingly popular, 3D point
cloud processing technology has attracted attention for use in mesh data
creation. Because the automatic generation of 3D objects using 3D point
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clouds is a critical topic of research, generative models, such as latent-
space generative adversarial networks (I-GAN) (Achlioptas et al., 2018), have
been devised. Many of these models have been evaluated using open-source
datasets consisting of large CAD models across specific object categories,
such as ModelNet (Wu et al., 2015). Therefore, a method for generating
point clouds using datasets consistent with individual intentions is yet to be
established. The datasets are mostly object categories, such as chairs and cars,
and deep learning is yet to be used in entire indoor or outdoor spaces as a
dataset to generate point clouds.

Therefore, to automatically construct a virtual space with a high degree of
freedom of expression that reflects the spatial shape of the real space and the
arrangement of objects, this study focused on the global shape of the indoor
space and designed a dataset for extracting the spatial features of the real
space using a 3D point cloud deep learning method through 3D scanning of
the real space. This study designed a dataset for extracting the spatial features
of the real space using a deep learning method for 3D point clouds. The
dataset was created by focusing on two items, namely number of input points
and amount of data. Feature extraction was performed using indoor spatial
point cloud data, and spatial feature extraction was evaluated by comparing
the shapes of the input point cloud and restored output point cloud as well
as the distance error.

DATASET DESIGN FOR THE EVALUATION OF SPATIAL FEATURE
EXTRACTION

For feature extraction corresponding to an arbitrary interior space, in this
study, first a rectangular 3D object that imitated a room in real space was
converted into point cloud data to extract global features, such as the walls
of the interior space, These data were used as a dataset.

Design of 3D Point Cloud Data From 3D Object

First, Unity game engine was used to create 100 rectangular 3D objects of
2.5 to 28 m in width x, 2.2 to 4.0 m in height y, and 5 to 28 m in depth z.

Next, the Poisson disk sampling method (Yuksel, 2015) was used to
convert the created 3D objects into point-cloud data. In this method, the
minimum distance between two sampled points can be controlled such that
it does not fall below a specified value. Thus, all points in the sampled cloud
were separated by a certain distance to perform sampling with high spatial
uniformity (see Figure 1).

Conditions for Dataset Design

In this study, the dataset conditions were determined by focusing on two
parameters, namely the number of input points and the number of data
points. We used 1024 and 2048 as the number of input points because using
these number of points in a point-cloud classification problem using PointNet
yields high accuracy (Charles et al., 2017). To evaluate a wide range of data,
the number of data points was set to 100, 500, 1000, 5000, and 10,000.
These data points were created by randomly rotating the 100-point cloud
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Figure 1: Conversion from a three-dimensional (3D) object to 3D point clouds.

data around the y-axis and expanding the data. Therefore, a dataset with two
input points x five data conditions = 10 conditions was created (Table 1).
During training, the dataset was normalized to a range of 0-1 based on the
maximum and minimum lengths of the rectangular point-cloud data in the
dataset. The dataset was divided into 90% training data and 10% test data.

CREATING A POINTNET-BASED AUTOENCODER

Creating an Autoencoder

An autoencoder is an algorithm in which a neural network is used to com-
press (encode) an input point cloud to a lower dimension, extract feature
vectors in the latent space, and extract features from the feature vectors to
restore (decode) an output point cloud similar to the shape of the input point
cloud. This mechanism is used for image denoising, anomaly detection, clus-
tering, and data generation. In this study, to perform feature extraction using
a 3D point cloud, the PointNet network structure was used as the encoder to
extract feature vectors.

PointNet

PointNet is a point-cloud deep-learning method in which point-cloud data
are used as direct input data. The 3D point clouds do not have an order or
grid structure for any of the data elements. Figure 2 reveals this phenomenon,
which reveals that even if any two points in the 3D point cloud are swapped,
the entire 3D point cloud has the same shape. Such data are called out-of-
order data and are difficult to handle in deep learning. PointNet supports
such unordered data by introducing symmetric functions, in which the out-
puts do not change even if the order of the input data changes. PointNet pro-
posed a network that combines shared MLP and max pooling. In shared MLP,
the same MLP is applied to each point along the channel direction. Let f(p, 0)
(where p is a 3D point and 0 is a weight parameter of MLP) be a shared MLP;
for example, when 3D point cloud data (p1, p2, ---, Pi> -** > Pj» - - - Pn) are
input, the outputis (f (p1), £ (P2), ~=+» F(®i)> > F(Pj)> > f(Pn))-In
PointNet, max pooling is used to aggregate the features from all points. This
pooling operation is applied channel by channel to the entire point-cloud.
Using the maximum value as the pooling function, the maximum value of the
entire point cloud remains unchanged, even if the order of the points changes;
thus, the output is independent of the order of the points. As described, the
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combination of a shared MLP and max pooling produces the same output,
regardless of the point order, and the desired symmetric function can be
described using a neural network. Figure 3 illustrates the structure of this
network.

Table 1. Conditions for the dataset design.

Number of input points ~ Number of data

1024 100 500 1000 5000 10000
2048

Machine Learning Model Structure

The PointNet-based autoencoder proposed by Achlioptas et al was used to
set the structure and hyperparameters of the machine learning model. Specifi-
cally, the encoder consists of three shared MLP with batch normalization and
an activation function (the ReLU function), which is applied after each layer.
Convolution is performed on the coordinates and features of each input point
using a common weight across all input points. Next, max pooling is used to
aggregate the global features of the point cloud to obtain a 128-dimensional
feature vector in the latent space. The decoder consisted of three fully coupled
layers, except for the output layer, where the ReLU function was applied. The
Chamfer Distance was used as the loss function for model training along with
the Adam optimization method. The batch size was 32, the learning rate was
0.0005, and 200 epochs were trained.
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Figure 2: Unordered 3D point clouds.
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Figure 3: Symmetric function of PointNet.
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Figure 4: Structure of the machine learning model for the autoencoder.

EVALUATION OF SPATIAL FEATURE EXTRACTION

Machine Learning Model Structure

Indoor space point cloud data in the real space were used as the evaluation
data. The input point cloud to the autoencoder and the output point cloud
after restoration were visualized, and the shapes were compared. If shapes
were restored precisely, the distance error was compared as a quantitative
evaluation. An Apple iPad Pro (2nd generation) equipped with a direct time-
of-flight (dToF) LiDAR system and Scaniverse, a 3D scanning application
was used to acquire indoor spatial point cloud data. The dToF is a LiDAR
ranging method that is used to measure the distance to an object by detecting
the time difference between the light emitted from the light source and the
light reflected from the object until it reaches the sensor. The acquired point
cloud data were output as 3D objects using Scaniverse and sampled using
the Poisson disk sampling method for input conditions of 1024 and 2048
points. Figure 5 displays the flow from the acquisition of the indoor space
point-cloud data to sampling. The interior was approximately 7.5 m wide,
2.8 m high, and 11 m deep.

The point cloud data were normalized to the range 0-1 based on the
maximum and minimum lengths of the rectangular point cloud data in the
dataset and subsequently input to a trained autoencoder for restoration. Nor-
malization parameters were used to denormalize the restored output point
cloud.

The input and restored output point cloud were visualized, their shapes
were compared, and the distance error was compared as a quantitative eval-
uation of whether the points were restored precisely. The input point cloud of
the autoencoder is the source point cloud S, and the output point cloud after
restoration is the target point cloud T. Mapping was performed using the kd-
tree method, which is the nearest-neighbor search method. Next, the distance
between the points was calculated using the mean squared error (MSE)[m?]
as follows:

1 n
MSE = ;Zl lps; —ari;  [*] (1)
1=
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Figure 5: Flow from acquisition to sampling of indoor spatial point cloud data.
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Figure 6: Flowchart of evaluation methods.

Here, ps; denotes the i-th coordinate vector of the source point group, qr;
denotes the i-th coordinate vector of the target point group, and 7 denotes
the overall number of points. Figure 6 displays the sequence of the evaluation
methods.

Evaluation Results

Figures 7 and 8 display the visualization results of the restoration for each
number of data points when the number of input points was 1024 and 2048,
respectively. All visualized point clouds were obtained from the y-axis direc-
tion. The shape did not differ considerably when the number of data was
5000 or more for either condition, whereas scattering of points and round-
ing near the vertices were observed when the number of data was 1000 or
less. However, the scattering of points was larger and the rounding near the
vertex was larger for 2048 points than for 1024 points. More than 5000
points could be recovered without scattering or rounding near the vertices.
Next, for each input point number condition, the MSE was calculated by
mapping the input and output point groups when the number of data were
5000 and 10,000. Tables 2 (a) and (b) present the results. With respect to the
number of input points, the MSE decreased and the accuracy increased with
the increase in the number of points. For the number of data points, the MSE
decreased and became more accurate with the increase in the number of data
points.
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Figure 7: Visualization of restoration results when the number of input points is 1024.
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Figure 8: Visualization of restoration results when the number of input points is 2048.

Table 2. Results of mean squared error (MSE) evaluation.

(a) Number of input points: 1024 (b) Number of input points: 2048
Number of data MSE[m?2] Number of data MSE[m?]
5000 0.141 5000 0.121
10000 0.136 10000 0.109
DISCUSSION

Discussion of Visualization and MSE Results

The visualization results revealed that the scattering of points and rounding
near the vertices when the number of data points was less than 1000 for
both conditions. This phenomenon could be attributed to feature points for
determining the shape of objects tending to gather around edges, corners,
and vertices of point cloud data in the classification problem. In the indoor
space used in this study, obstacles were present near the vertices of the room,
which prevented LiDAR from accurately acquiring the area near the vertices
of the room. Additionally, a point cloud of the passage outside the room
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Figure 9: Feature extraction near vertex by autoencoder (2048points, 100data).

was acquired. Therefore, as displayed in Figure 9, the learned autoencoder
recognized the area near the top of the room as the top of the obstacle and
recognized the passage as the top, resulting in an rounded shaped output.
Furthermore, point scattering and roundness were greater for the 2048 input
points than for the 1024 input points. This phenomenon could be attributed
to obstacles and pathways recognized and restored as vertices. Thus, the more
points are in these spaces, the greater is the number of features in these spaces.
Therefore, the autoencoder judged that the 2048 points were a group of input
points with rounded features and outputted a more rounded shape. A total
of 5,000 data points were used. In terms of the number of data, the shape
can be recovered without scattering of points when the number of data is
5000 or more. This phenomenon could be attributed the autoencoder easily
extracting the features of the rectangular point cloud in the dataset when the
amount of data is large. Therefore, the shape near the vertices is corrected
and output as a shape closer to the rectangular point cloud.

The distance error results revealed that the MSE was smaller, and the
accuracy increased with the increase in the number of input points. This
phenomenon suggests that the more input points are, the easier it is to
extract important features and the more accurate the restoration are. Fur-
thermore, the MSE decreased, and the accuracy increased as the number of
data points increased because, as mentioned, the autoencoder could extract
more features of the rectangular point cloud shape from the dataset when
the number of data increased, resulting in an output of a shape closer to the
rectangular point cloud with correction near the vertices. However, because
difference was not notable, when a rectangular point cloud is used as the
dataset, the autoencoder is speculated to extract fewer features because of
the absence of objects such as furniture. Therefore, MSE accuracy did not
differ considerably when the number of data were 5000 or more.

Therefore, when the dataset is a rectangular point cloud, the restoration
of the indoor space point cloud data can extract the spatial features of the
shape if the number of data is 5000 or more. Using a rectangular point cloud
as the dataset, the autoencoder can restore the point cloud by complement-
ing the unevenness of the interior space. This strategy can effectively remove
noise and complement missing data when LiDAR acquires point-cloud data
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in real space. However, completely restoring the shape of the interior space is
not possible because of the following two factors: first, because the dataset is
a rectangular point cloud, it cannot completely restore the shape of a room
that is not in the dataset. To solve this, room space dataset, such as ScanNet
(Dai et al., 2017), should be used. ScanNet is used for the deep learning
of 3D point clouds for object recognition and segmentation. Second, the
autoencoder used in this study introduced the symmetric function of Point-
Net, which could be attributed to its configuration to represent the features
of the entire point cloud as a single vector. Thus, the symmetric function was
suitable for extracting global features of the entire interior space but not for
extracting local features such as the shape of objects or fine irregularities. To
solve this problem, numerous methods have been established for extracting
local features by convolution and using neural networks that perform image
processing. If information can be extracted on the 3D shape of an indoor
space by focusing on the local shape around each point, then PointNet can
be used for autoencoding. If information can be extracted by focusing on the
local shape around each point, then the shape of the input point cloud can
be restored with higher accuracy than an auto-encoder using PointNet.

Applicable Limitations

In this study, we input indoor space point cloud data with sizes within the
range of the rectangular point cloud in the dataset (created with a width x
of 2.5 to 20 m, a height y of 2.2 to 4.0 m, and a depth z of 5 to 28 m) to
the autoencoder and performed restoration. However, because larger indoor
spaces than in the above range exist in real space, we verified the output of
the autoencoder when a rectangular point cloud larger than the dataset was
input to the autoencoder to confirm the limits of the application. Specifically,
we created rectangular point cloud data for the three conditions in Table 3.
In condition (a), we added +1.0 m for width, +0.1 m for height, and +1.0 m
for depth till the maximum value of the dataset. In condition (b), we added
x 1.5 m width, x1.5 m height, and x1.5 m depth from the maximum value
of the dataset. In condition (c), the width, height, and depth were added by
x2.0 m, x2.0 m, and x2.0 m, respectively, from the maximum value of the
dataset. Under all conditions, the number of input points was standardized
to 2048, and the data were input to a trained autoencoder with 10000 data
points.

Table 3. Conditions for verifying applicability limits.

Condition x[m] y[m] z[m]
(a) 29.0 4.1 29.0
(b) 42.0 6.0 42.0
(c) 56.0 8.0 56.0

Figure 10 displays the visualization results for the output point cloud.
Under condition (a), the output points were slightly rounded near the ver-
tices, but points were not scattered. For conditions (b) and (c), the points
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Figure 10: Visualization of output point clouds according to each condition.

were scattered, and the output point cloud had a shape that differed consid-
erably from that of the input rectangular point cloud. Therefore, using point
cloud data within the size range of the point cloud data in the dataset is nec-
essary as the input point cloud when performing spatial feature extraction
using a 3D point cloud.

CONCLUSION

In this study, a novel method was devised to automatically construct a virtual
space with a high degree of freedom of expression. The virtual reflects the
spatial shape of the real space and the arrangement of objects. In this method,
first, the global shape of the interior space was considered to design a dataset
for extracting spatial features of the real space by scanning the real space
in 3D and using a PointNet-based autoencoder. The dataset consisted of the
point cloud data of a rectangular 3D object that was a simple imitation of a
room in real space, focusing on two items, namely the number of input points
and the number of data points. The results of the autoencoder restoration
revealed that spatial feature extraction can be achieved when the number of
data points is 5000 or more, regardless of the number of input points. In the
future, we will develop machine learning models for spatial feature extraction
and extraction of local features, such as object shape and fine irregularities,
by using the indoor space dataset used in the deep learning of 3D point clouds
for segmentation.
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