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ABSTRACT

The objective of this study was to use biological information to infer task efficiency
during a computational arithmetic task with a cognitive load. I Four individuals par-
ticipated in this investigation by performing a continuous addition task. A model to
estimate the work efficiency from the biological information measured during the
experiment was created using a convolutional neural network. The result was that
work efficiency was estimated with high accuracy using by cerebral blood flow in
the prefrontal cortex. In addition, the left dorsolateral and dorsomedial prefrontal cor-
tices cortex is of great importance, suggesting that these areas may play a role in the
estimation of work efficiency.

Keywords: Cognitive load, Biological information, Work efficiency, Convolutional neural
network

INTRODUCTION

Long working hours have recently become a major problem in Japan. To
solve this problem, it is necessary to improve work efficiency and develop an
evaluation method. In addition, with the development and spread diffusion
of DX technology, the work that humans are engaged in often frequently
involves situations where a cognitive load is required to process informa-
tion. Cognitive load refers to the amount of information that is processed by
the brain’s working memory. It becomes difficult to process new information
and complete tasks when cognitive load is high. Therefore, this study focused
on tasks that require cognitive load. Previous studies on cognitive load and
work efficiency have often used biological information to assess cognitive
load. For example, Yamaguchi conducted a time-series frequency analysis
of the RR interval of heart rate variability during continuous additive work
and reported that the LF and LF/HF components, which are indicators of
sympathetic nervous activity, increased, whereas while the HF component,
which is an indicator of parasympathetic nervous system activity, decreased
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(Yamaguchi, 2010). Mishima also measured cerebral blood flow in the pre-
frontal cortex during a verbal fluency task using fNIRS and reported that the
relative values of oxygenated hemoglobin and total hemoglobin increased
during the task (Mishima et al., 2010). These results suggest that biological
information such as heart rate variability and cerebral blood flow can be used
to assess evaluate cognitive load. However, there is no research on the assess-
ment of work efficiency in tasks with cognitive-load tasks using biological
information. Therefore, in this study, a continuous-addition task experiment
was conducted to create a model for estimating work efficiency using bio-
logical information. Biological information, such as heart rate variability
and changes in the relative concentrations of oxygenated and deoxygenated
hemoglobin in the prefrontal cortex, were used as evaluation indices. Con-
volutional neural networks (CNNs) are widely used as machine learning
methods and are also frequently used in studies of cognitive load and bio-
logical information. In this study, a CNN was used to extract features from
time-series data and create a model to estimate work-efficiency.

Continuous Additive Task Experiments for Work Efficiency Estimation

To estimate individual work efficiency based on biometric data, a continu-
ous addition task simulating the Uchida-Kraepelin performance test (Uchida,
1957) was created, and the biological information was measured during the
continuous addition task. Figure 1 shows the continuous addition task used
in the experiment. The lower part of Figure 1 shows the following statement:
“Please enter the value obtained by adding the upper-right and upper-left
numbers of the ‘_’ to the answer, which is irrevocable.”

Figures 2 and 3 show the experimental environment and protocol, respec-
tively. Amultichannel bioinstrumentation device (Web-1000,Nihon Kohden)
was used to measure the electrocardiograms, and the sampling period was
set to 1 kHz. The wearable optical topography WOT-220 (Hitachi High-
Technologies Corporation) was used to measure cerebral blood flow in the
prefrontal cortex at a sampling rate of 5 Hz. Participants were seated 0.5
m away from the monitor during the experiment. This study was approved
by the Ethics Committee on Research Involving Human Subjects (R5-E-4) at
Saitama University.

Verbal informed consent was obtained from all participants. In the contin-
uous addition task, participants had to find the sum of two adjacent numbers
in a random number sequence displayed on the screen and enter the value of
the last digit of the sum using a numeric keypad. In these tasks, a new number
sequence was displayed every minute, regardless of the number of responses,
according to the original Kraepelin test. Practice sessions were conducted
prior to the experiment to avoid the effects of familiarity with the numeric
keypad entries and the tasks. The practice was to be performed until partici-
pants were able to enter numbers without looking at the numeric keypad and
was limited to a maximum of 10 min. Responses were entered using only the
dominant hand with a numeric keypad and a mouse.

The experiment was conducted five times on different days with four
Japanese males (22.8 ± 0.75 years old). The participants were not informed
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of the task’s duration so as to deter them from performing it while cognizant
of the time.

Figure 1: Task image.

Figure 2: Experimental environment.

Figure 3: Experimental protocol.
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ANALYSIS METHOD

The ratio of oxygenated hemoglobin to deoxygenated hemoglobin increases
when blood vessels dilate near active nerves dilate in response to neural activ-
ity when the brain is activated; this increase in cerebral blood flow was used
in this study.

In this study, the changes in the relative concentrations of oxygenated and
deoxygenated hemoglobin were used as a measure of cerebral blood flow. In
this study, measurements were performed with the WOT-220 such that the
transmitter and receiver sections were spaced 33 mm apart so that the Fpz
in the international 10–20 method (Okamoto et al., 2004) overlapped with
the intermediate position between CH10 and CH13. The gray areas here
indicate channels that were excluded from the analysis because they could
not be measured due to the influence of hair or other factors. To analyze the
brain regions, we divided the brain into right (right dorsolateral prefrontal
cortex), middle (dorsomedial prefrontal cortex), and left (left dorsolateral
prefrontal cortex) regions. Figure 4 shows the divisions of the regions in the
experiment.

Noise was removed from the datameasuredwithNIRS.Due to its technical
characteristics, a standard moving average (SMA) was used to remove the
spike noise. N = 5 signal smoothing was performed on oxyHb and deoxyHb
measurements.

To remove noise caused by head and body movements, noise reduc-
tion was performed using a correlation-based signal improvement (CBSI)
(Cui et al., 2010) method. This method takes advantage of the fact that the
oxyHb and deoxyHb values are negatively correlated when brain activity is
present, whereas the oxyHb and deoxyHb values are positively correlated
when variations due to non-neural activities such as body movements are
present.

MACHINE LEARNING MODEL

In this model, the input and output data were standardized to match the
scale of each variable. The model is a regression model that estimates work
efficiency by preparing a convolutional layer and an all-combining layer for
feature extraction and learning between combined features for each type

Figure 4: Area division of NIRS.
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of biological information, and then combining the outputs from each all-
combining layer and inputting them into the all-combining layer. ReLU
functions were used as the activation functions for each convolutional layer
and all combined layers, and linear functions were used for the output layer.
Training was performed using a k-partition cross-validation method with five
partitions and cross-validation.MSE was used as the loss function and Adam
was used as the optimization method. The hyperparameters were a batch size
of 32, number of epochs of 200, and a learning rate varied between 0.01 and
0.0001 using ReduceLROnPlateau, a program that monitors the behavior of
the loss function and reduces the learning rate if the loss does not decrease.
The program monitored the behavior of the loss function and reduced the
learning rate when the loss did not decrease. In this model, if the loss did not
decrease over 20 epochs, then the learning rate was reduced to 20% of the
previous rate.

MAPE and R2 values were used as evaluation indices for the test data. PFI
is a measure of the importance of a feature in the prediction model. Incre-
mental errors can be used to indicate the importance of features. To examine
the effects of electrocardiograms and cerebral blood flow on learning, a
model was created in which electrocardiograms alone were an explanatory
variable, cerebral blood flow alone was an explanatory variable, and both
electrocardiograms and cerebral blood flow were explanatory variables.

Figure 5: Shape of the machine learning model.
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EXPERIMENTAL RESULTS

The results of the training with the machine-learning models are shown
below. Figures 6, 7, and 8 show the learning curves of the model created
for Subject A’s electrocardiogram only, the model created for cerebral blood
flow only, and the model created for both electrocardiogram and cerebral
blood flow.

Figure 6: Learning curves for models created from the electrocardiograms.

Figure 7: Learning curves for models created from the cerebral blood flow.
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Figure 8: Learning curves for models created from the electrocardiogram and cerebral
blood flow.

Table 1. Experimental participants evaluation of test data.

Participants Indicators Electro cardiogram Cerbral blood flow Electro cardiogram and
Cerbral blood flow

A
MAPE [%] 12.7 2.90 4.04

R2
−6.18E-04 9.42E-01 8.84E-01

B
MAPE [%] 17.1 3.42 4.39

R2
−1.56E-03 9.04E-01 9.15E-01

C
MAPE [%] 10.7 2.61 4.32

R2
−3.7E-05 9.24E-01 8.06E-01

D
MAPE [%] 12.7 4.69 3.53

R2
−6.50E-04 8.99E-01 8.84E-01

Mean
MAPE [%] 13.3 3.41 4.07

R2
−7.16E-04 9.17E-01 8.72E-01

Figure 6 shows that the loss function of the model created using only
electrocardiograms remained unchanged as the number of training sessions
increased. The results in Figures 7 and 8 show that both the training loss and
the validation loss converged at low values for the model created using only
cerebral blood flow, and the model trained using both electrocardiograms
and cerebral blood flow, respectively. The learning curves of the other collab-
orators also showed the same trend as those of Collaborator A.Table 1 shows
the MAPE and R2 values for the test data for each model from experimental
collaborators A to D, respectively.

From the above results, it can be said that the model created using only
the electrocardiogram showed a low R2 value, and that the estimation using
only the electrocardiogram was not sufficient. The model using only cerebral
blood flow was the most accurate and more accurate than the model using
both electrocardiograms and cerebral blood flow.
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Figure 9: PFI results by prefrontal region.

Figure 9 shows the results of the PFI for each prefrontal region, it is evident
that the right dorsolateral prefrontal cortex was relatively less important,
whereas the dorsomedial and left dorsolateral prefrontal cortices were more
important.

DISCUSSION

The above results suggest that it is possible to estimate work efficiency from
biological information. In addition, the accuracy of the models using only
cerebral blood flow, electrocardiograms, and both cerebral blood flow and
electrocardiograms suggests that changes in cerebral blood flow are more
important than those in electrocardiograms for estimating work efficiency.
The calculations were performed using both short-term memory (remember-
ing numbers) and long-term memory (using calculation methods). Working
memory is defined as a mechanism that actively retains the information
required to perform an activity or task. The prefrontal cortex is thought to
be heavily involved in this process (Matsunami and Naito, 2000). In addi-
tion, the ratio of oxyHb in cerebral blood flow increases when the brain is
activated, and the values of oxyHb and deoxyHb are negatively correlated
when brain activity is present. In the present model, oxyHb and deoxyHb can
capture the activity of the prefrontal cortex and thus predict work efficiency
with high accuracy.

The results of the PFI for each region of cerebral blood flow suggest that
the dorsomedial and left dorsolateral prefrontal cortices are important for
estimating work efficiency. In general, the dorsomedial prefrontal cortex is
responsible for attention, control of external information, and execution,
whereas the left dorsolateral prefrontal cortex is responsible for language
and mathematical processing. Previous studies have shown that the left side
of the prefrontal cortex is activated during computation (Mishima et al.
2010). This suggests that work efficiency can be estimated by recording the
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activation of the prefrontal cortex during computation. It is hypothesized
that the right side of the prefrontal cortex, which is relatively insignifi-
cant, is associated with intuition and emotion. The computational task in
this study was monotonous, so it is thought that changes in emotion and
work efficiency were relatively independent of each other; therefore, the
importance of the right prefrontal cortex was relatively low. The heart rate
variability indices LF, HF, and LF/HF, which have been associated with the
continuous addition task in previous studies, were used as explanatory vari-
ables in the present model, with the expectation that they would reflect
the characteristics of learning. This is because the ECG data used as the
explanatory variable was 30 s long, which did not adequately capture the
characteristics of the heart rate variability indices, and the amount of data
was large because the ECG data were acquired at 1 kHz. Moving for-
ward, we aim to conduct further research to determine whether the heart
rate variability index can be used to forecast long-term work efficiency and
whether the estimation accuracy can be improved through the downsampling
of ECG data.

CONCLUSION

The objective of this study was to assess work efficiency during a cognitive
load and to estimate work efficiency using the biological information and
to build an estimation model of work efficiency during a continuous addi-
tion task. The experimental results suggest that cerebral blood flow in the
prefrontal cortex can predict work efficiency with high accuracy and that the
dorsomedial prefrontal cortex and the left dorsolateral prefrontal cortex may
be particularly useful in this estimation. Future prospects include the possi-
bility of using heart rate variability indices to estimate work efficiency over
long periods of time, and whether downsampling the ECG data improves the
accuracy the estimate.
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