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ABSTRACT

In recent years, several gait support and training devices have been developed to
improve the walking ability of the elderly. However, most of these devices are only
intended for straight walking on flat surfaces and do not support turning or accelera-
tion/deceleration. This study investigated the possibility of predicting velocity changes
using surface EMG (sEMG) and machine learning methods. The ultimate goal was to
develop walking aids and training devices that can help with turning and accelera-
tion/deceleration movements. The R2 score of the true value and the predicted value
was 0.630 ± 0.107, indicating moderate accuracy, and the trend of the time series was
successfully captured. It is possible to predict the velocity from the sEMG potentials of
the Medial Hamstrings and Medial Head of Gastrocnemius through feature selection.
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INTRODUCTION

In recent years, researchers have developed various gait support and train-
ing devices to improve the walking ability of the elderly. However, most
of these devices are designed for straight walking on flat surfaces and do
not support unsteady walking such as turning, acceleration/deceleration, and
ascending/descending stairs. Unsteady walking accounts for 40% of daily
walking (Brain et al., 2007), highlighting the need for the development of
gait support and training devices that can support unsteady walking. To sup-
port unsteady movements, the system must predict the user’s condition and
provide support based on the predicted values. This study investigated the
possibility of predicting speed changes during wayfinding walking using sur-
face electromyography (sEMG).Wayfinding walking is a common activity in
which individuals walk in search of a destination in a given area. It involves
various unsteady elements such as turning and acceleration/deceleration. To
make predictions, a machine learning model has been developed that uses
a Transformer structure that has proven successful in fields such as natural
language processing and computer vision.
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Muscle Activity and Gait Acquisition Experiments During Walking

As part of the study, experiments were conducted to measure muscle activity
and gait during walking.

Equipment Used and Test Muscles

A wireless electromyograph, motion capture system, and destination indica-
tion system were used for the experiment. The wireless electromyograph had
a sampling frequency of 1,000 Hz. Ten electromyographs were attached on
each side of the five test muscles that exhibited significant myoelectric paths
during turning.

• Tensor Fasciae Lates (TFL)
• Vastus Medialis Oblique (VMO)
• Medial Hamstrings (MH)
• Medial Head of Gastrocnemius (MHG)
• Tibialis Anterior (TA)

The muscles were positioned as follows: for the TFL, on the muscle belly
of the two transverse fingers anteriorly inferior to the superior anterior
iliac spine; for the VMO, on the muscle belly of the two transverse fingers
proximal to the bottom of the patella and inclined inwards at an angle of
approximately 55 ◦ to the long femoral axis. The MH electrode was placed
on the muscle belly approximately 15 cm proximal to the patellar cleft, the
MHG electrode was placed on the muscle belly five transverse fingers distal
to the knee socket skin line. The TA electrode was placed on the muscle belly
on the medial side of the tibial ridge distal to the four transverse fingers from
the tibial rough surface. The electrodes were placed on the left and right legs
in a targeted manner.

The destination is indicated along the subject’s walking route via LEDs
as part of the destination indication system. The LEDs were controlled
by a Raspberry Pi and remotely controlled via SSH communication a.
During the exploratory walk, participants randomly selected illuminated
LEDs as their destinations. All devices were connected to a single PC and
time-synchronized, as shown in Figure 1.

Figure 1: Communication system for experimental devices.
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Experimental Environment and Walking Route

The experiment was conducted in an indoor room that was at least 3 m high,
5 m wide, and 20 m deep, and was free of furniture. Eight cameras were
positioned to cover an area 3 m high and 12 m wide, as shown in Figure 2.
Six LEDs were placed around the shooting area as landmarks for exploratory
walking. Three walking paths were created for the experiment: straight ahead
along the diagonal line of the shooting range, as shown in Figure 3a; clock-
wise and counterclockwise around the walking path, as shown in Figure 3b;
and in the direction of the LEDs illuminated by the destination indication
system, as shown in Figure 3c.

Experimental Procedure

The experiment was conducted with a male participant (22 years old) with
the approval of the Human Ethics Committee of Saitama University. Elec-
tromyographs and markers were attached to the participant’s test muscles
before they were asked to wear a motion-capture suit. The participant com-
pleted the walking task in 27 trials, performing three trials at three different
speeds (subjective normal speed, subjective high speed, and subjective slow
speed) on both straight and circular routes. The participant then completed
five trials of the walking task using the destination indication system on the
wayfinding route.

Figure 2: Experimental environment.

Figure 3: Walking route.
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Data Processing for the Construction of Velocity Prediction Models

The following process was applied to the sEMG and motion-capture data
acquired during the experiment.

Noise Reduction and Normalization of sEMG

To remove power supply and body motion noise in the sEMG, a Butter-
worth bandpass filter with passing frequencies in the range of 20–450Hz was
applied based on the work of De Luca et al. The data distribution was then
smoothed using the root mean square of the moving average (MoveRMS)
expressed in equation (1) and adjusted using the Box-Cox transform from
equation (2) (see Figure 4).
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(3) was used. Normalization was then performed using the maximum (xmax)
and minimum values (xmin), as expressed in equation (4), to ensure that the
data fell between 0 and 1.

L (λ) = (λ− 1)
∑
i

(
log (xi)

)
−
N
2
log


∑

i

(
x(λ)i − x

(λ)
)2

N

 (3)

Normalize (x) =
x− xmin

xmax − xmin
(4)

Figure 4: Changes in sEMG data distribution due to Box-Cox transformation.

Calculation and Normalization of the Straight-Line Directional
Velocity

The data obtained from the motion capture contained missing values owing
to shielding and other factors; therefore, a second-order spline interpolation
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was performed. The center of gravity G in the absolute coordinate system
XYZ was then determined using the coordinates of the four markers RA,
LA, RP and LP attached to the waist, as shown in Figure 5, with reference
to the origin of the captured area. The reference vector R was determined as
described in equation (5).

R = LA− RA =
(
Rx,Ry, Rz

)
(5)

The experiment was conducted on a floor without undulations. There-
fore, it was assumed that there was no change in the height direction, and
the velocity change in the XZ plane was analyzed. The reference vector and
the center of gravity at time t were labelled as Rt and Gt, respectively. The
relative coordinate system X

′

Z
′

was used, with the X
′

axis parallel to Rt The
velocity vt was determined by taking the time derivative of the center of grav-
ity coordinates,Gt + 1−Gt. Equation (6) shows how it can be converted into
a relative coordinate system using the rotation matrix R (−θ).

v
′

t = R (−θt) vt =
[
cos θt sin θt
− sin θt cos θt

] [
vt,x
vt,z

]
(6)

The Z
′

component of the velocity v
′

t expressed in the relative coordinate sys-
tem is defined as the Straight-Line Directional Velocity. Similar to the sEMG,
the velocity was normalized using the maximum and minimum values to
ensure that the data ranged between zero and one.

Figure 5: Marker mounting position and coordinates.

Creating Datasets With Lag Features

Let X = {X1, X2, . . . , Xn | X i ∈ R10
} be the processed sEMG time series

andY = {Y1,Y2, . . . ,Yn | Yi ∈ R1
} be the Straight-Line Directional Velocity

time series, where X t and Yt represent the states at time t. If lag features are
used to predict the next l datasets from the past k datasets, the datasets can
be expressed as shown in equations (7) and (8):

X(
k)
t =

{
X t−k, X t−k + 1, . . . , X t−1 | X i ∈ R10

}
(7)

Y(l)
t =

{
Yt, Yt + 1, . . . , Yt + l−1 | Yi ∈ R1

}
(8)
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Building a Model to Predict Straight-Line Directional Velocity

A prediction model with a Transformer encoder (Vaswani et al., 2017),
as shown in Figure 7a, was created to predict the straight-line directional
velocity from the previous sEMGs. The model consists of four layers of
Transformer encoders, each of which contains a Multi Head attention and
a feedforward network (FFN), with residual learning applied through a skip
connection (Figure 7b).

Multi Head attention and five attention mechanisms were arranged in par-
allel to extract different representations (Figure 7c). In this architecture, self-
attention can capture the relationship between different parts of each input,
and attention is computed using equation (9), whereas FFN uses GELU, rep-
resented by equation (10), as the activation function to achieve non-linear
transformation and random regularization (Hendrycks and Gimpel, 2016),
where 8 represents the standard normal distribution function.

During training, one trial of the five wayfinding walks was used as test
data to evaluate the performance of the model, while 90 % of the remain-
ing data were used for training the model, and 10 % were used to validate
overfitting (Figure 8). The datasets for each of the five wayfinding walking
trials were designated as Fold 1 to Fold 5, and the model was evaluated by
cross-validation. The relevant parameters for training were the mean abso-
lute error (MAE) as the loss function, Adam as the optimization algorithm,
a learning rate of 0.001, a batch size of 16, and 50 epochs.

Figure 6: Straight-line directional velocity at time t.

Attention(Q, K, V) = softmax

(
Q · KT√

dk

)
V (9)

GELU (x) = x ·8(x) (10)

FFN (x) = W1 ·GELU
(
W0x + b0

)
+ b1 (11)



Feature Selection and Estimation of Route and Gait During Walking 79

Figure 7: Constructed straight-line directional velocity prediction model.

Figure 8: Data splitting procedure.

Evaluation of Predicted Results

Table 1 lists the evaluation indices for each Fold. Figure 9 shows the true and
predicted values for Fold 5. Although the trend of the time series was well cap-
tured, some output values differed from the true values. Figure 10 illustrates
the permutation feature importance (PFI), which indicates the importance of
the features.

Table 1. Prediction results for each fold.

Fold MAE RMSE R2

1 0.080 0.110 0.699
2 0.081 0.107 0.717
3 0.092 0.117 0.690
4 0.090 0.119 0.576
5 0.094 0.124 0.466
Total 0.087±0.006 0.115±0.007 0.630±0.107
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Figure 9: True and predicted values of the test data in fold 5.

Figure 10: PFI score for the training data.

CONSIDERATION

The PFI score showed that the MH and MHG were significant features.
Therefore, training was conducted using only the MH and MHG sEMGs
as input. The results are listed in Table 2. Although the accuracy decreased,
some predictions were possible. Walking speed can be predicted from sEMG
of theMH andMHGmuscles alone. TheMH is amuscle group that performs
extension of the knee joint and extension and adduction of the hip joint, and
it is hypothesized that prediction of these movements from the sEMGpredicts
the straight-line directional velocity during walking.

It is hypothesized that the larger error observed when only some sEMGs
are used as input is related to the swaying motion during walking. During
human gait, the body sways from side to side to maintain balance, and this
swaying cannot be predicted by MH and MHG alone. To reduce the error,
it is considered effective to remove the noise caused by swaying from the
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straight-line velocity or select muscles to predict swaying and use them for
training.

CONCLUSION

The aim of this study was to develop a system to support and train non-
stationary walking and to investigate whether it is possible to predict straight-
line directional velocity using the sEMG. The distribution of the sEMG data
was adjusted using a Box-Cox transformation, and the straight-line velocity
was calculated using a rotation matrix. With this data, a dataset was created,
and a machine learning model was trained. The results showed that changes
in velocity during the exploration walk were adequately captured. The results
also suggest that the sEMG of the medial hamstrings and medial head of the
gastrocnemius may be able to predict velocity changes.

Table 2. Prediction results using only the MH and MHG sEMGs for each epoch.

Fold MAE RMSE R2

1 0.130 0.166 0.311
2 0.143 0.178 0.216
3 0.145 0.187 0.206
4 0.129 0.179 0.042
5 0.159 0.192 −0.270
Total 0.141±0.012 0.180±0.010 0.101±0.229
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