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ABSTRACT

Mental health and well-being have to be considered on an equal footing when design-
ing digitalized workplaces in production. We present the configuration of selected
wearable sensor technologies together with the architecture of the Intelligent Sen-
sor Box to enable monitoring resilience scores at the production site. The wearables
include a Garmin vivosmart 5 fitness tracker to provide cardiovascular data, the green-
TEG CORE body temperature sensor, Pupil Labs Neon eye tracking glasses and an
optional sanSirro QUS smart shirt with textile biosignal measurements of vital param-
eters. We provide a framework to integrate a sequence of daily strain scores within
a pre-determined time window of a preceding working period, and finally integrate
this into a current resilience score. We present the estimation of the daily strain score
based on the wearable sensing data that were captured in the Human Factors Lab in
Austria during activities that are characteristic for the car production workplace. Fur-
thermore, we demonstrate how resilience scores would impact the decision-making
in the use case of daily dynamic worker allocation.

Keywords: Resilience, Physiological strain, Cognitive-emotional strain, Wearables, Worker
allocation

INTRODUCTION

Sustainability, human-centricity, and resilience are the hallmark features of
Industry 5.0 (European Commission, 2020). The worker is not to be con-
sidered as a ‘cost’, but rather as an ‘investment’ position for the company,
allowing both the company and the worker to develop. This implies that the
employer is interested in investing in skills, capabilities, and the well-being
of its employees, to attain its objectives. Mental health and well-being must
be considered on an equal footing when designing digitalized workplaces.
While there are new risks associated with digitized ways of working, such
as the risk of burnout due to the always-online and always-available work-
ing culture, digital technologies could be used to support workers in better
controlling and managing the risks and impact of the new working environ-
ment on their mental health and well-being. Digital solutions and wearables
could open new channels for alerting workers and their general practitioners
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about critical health conditions, both physiological and mental. They could
also support workers in adopting healthy behaviors in the workplace. This is
moreover likely to bring economic benefits and savings due to productivity
gains and avoidance of accidents, long-term illness, and absenteeism.

The European project FAIRWork (Paletta et al., 2023) brings human, AI,
data, and robots together by supporting decision-makers in making decisions
thus positively affecting the work balance between workers and machines.
One key aspect for the daily decision-making on worker allocation in pro-
duction processes is to consider the resilience of individual workers in the
context of fostering well-being and avoiding illness and absences.

Figure 1: Wearable biosignal sensor technologies proposed to be applied in the pro-
duction environment for studies and daily monitoring: (a) fitness tracker and (b) smart
shirt for recording cardiovascular data, and (c) eye tracking glasses for cognition data.

Psychological resilience is a meaningful adaptation in persons’ psycho-
logical traits and experiences that allows them to regain or remain in a
healthy mental state during crises without long-term negative consequences
(Southwick et al., 2014). Resilience has shown that it plays a crucial role in
promoting mental health and well-being: resilient people are better equipped
to navigate situational challenges, maintain positive emotion and motivation,
and recover from setbacks. They demonstrate higher levels of self-efficacy,
optimism, and problem-solving skills, which contribute to their ability to
adapt and thrive in adverse situations.

The architectural construct of the Intelligent Sensor Box (ISB; Paletta et al.,
2023) enables the measurement of worker’s physiological strain and psy-
chological stress while performing tasks and provides information about
the workers estimated resilience. It consists of a framework for a set of
stationary and wearable sensors, AI-based analytics for assessment and opti-
mization functions. It can be applied to evaluate the ergonomics and design
of industrial training and work environments.

We present the concrete development of a set of wearable sensor tech-
nologies together with the ISB dedicated software architecture that enables
monitoring and analysis to study resilience scores at the production site. The
wearables include a “Garmin vivosmart 5” fitness tracker to provide heart
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rate (HR) and heart rate variability (HRV), the greenTEG “CORE” body
temperature sensor to be attached to the chest, Pupil Labs “Neon” eye track-
ing glasses to provide eye tracking data with 200 Hz sampling rate, and
optionally a “QUS” biosignal shirt of sanSirro GmbH for measuring HR,
HRV and breathing rate. The raw data are interpreted to provide the esti-
mated Physiological Strain Index (PSI; Moran et al., 1998) and a heuristic
cognitive-emotional stress score. The raw data and processed features can
be monitored in a dashboard for human experts’ decision-making either for
research or at the production site.

We present an early prototype version that estimates a daily strain score
based on sensing data that were captured in the Human Factors Lab in
Austria during exercises intended to mimic characteristic activities in an auto-
motive production workplace. Furthermore, we demonstrate how resilience
scores would impact the decision-making in the use case of daily dynamic
worker allocation.

RELATED WORK

Work-related stress usually occurs when the demand exceeds the worker’s
capacity to perform (Wegner, 1988). Exposure to stress has been shown to be
related to adverse effects in the way people feel, think, and behave (Griffiths,
1995), and generally, it is demonstrated to have psychological consequences
on workers, such as, states of anxiety and frustration (Brunzini et al., 2021).
At the physiological level, it can alter vital processes, such as heart and
breathing activity, whereas from the physical point of view, it affects nat-
ural posture and body activity (Brunzini et al., 2021). Industry 5.0, as a new
human-centered perspective, puts human workers at the center of production
processes and ensures that technology adapts to their requirements (Yeow
et al., 2014). However, stress has further consequences on production activ-
ity due to the positive correlation with errors and periods of distraction at
work, reducing the quality and performance of the worker (Zizic et al., 2022)
and leading to new costs and losses for companies.

Blandino (2023) provides a review on the measurement technologies on
stress in smart and intelligent manufacturing systems. This review identifies
and summarizes a growing body of literature that recognizes the importance
of human-centered manufacturing systems (Wang et al., 2020; Nguyen et al.,
2022) and the consequent human factors, especially workload, physical and
mental fatigue (Villani et al., 2019), ergonomics (e.g., Stefana et al., 2022)
and related indicators (Argyle et al., 2021; Digiesi et al., 2020). From the
psychological perspective, studies review traditional standard questionnaires
in order to adapt them to new manufacturing contexts. For example, Lesage
et al. (2012) focused on the properties of the Perceived Stress Scale. On the
physiological perspective, the literature includes significant studies (Leone
et al., 2020) proposing a multi-sensor platform to monitor stress in man-
ufacturing contexts. Han et al. (2017) designed a wearable device for the
detection of work-related stress; and that of Setz et al. (2009) who described
a wearable device for discriminating the phenomenon of stress from the cog-
nitive load. On the other hand, Khamaisi et al. (2022) proposed strategies
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for identifying potential causes of stress for workers, which may be induced
by collaboration with robots, as explored by Arai et al. (2010). deVries et al.
(2019) presented a framework for the integration of stress and resilience of
employees that was initially based on questionnaires, ecological momentary
assessment (EMA) as well as wearable monitoring. In this wider context,
Dunghana et al. (2021) presented a concept for flexible production planning
that incorporates human workers and investigates different scenarios of task
allocation between humans and machines and their impact on production
workflows.

One of the rare research works on wearable sensing of stress and resilience
was provided by Adler et al. (2021) in which a system was created to
find indicators of resilience using passive wearable sensors (Fitbit armband)
and smartphone-delivered EMA. This system that was specialized on the
workplace of care professionals (resident physicians) identified resilience
indicators associated with physical activity (step count), sleeping behavior,
reduced heart rate, increased mood, and reduced mood variability.

The innovative contribution in the FAIRWork project focusses on the esti-
mation of human resilience as a functional of stress monitoring, especially in
the industrial environment of the specified use cases (e.g., worker allocation).
In this context, we present an initial stage of a complete model on resilience.
This model would be extended based on further research on wearable sensor
data and digital Human Factors analytics. Furthermore, this model would
include additional sensors, such as, a smart shirt as well as eye tracking
glasses, for further refinement based on multisensory-based assessment of
resilience scoring.

DECISION SUPPORT FOR WORKER ALLOCATION

The process of workload balance is triggered by an event which makes an
allocation or reallocation of workers necessary (e.g., planning the weekly
production, a change in the production lines etc.). The start event is followed
by two parallel tasks, where one concerns availability of the operators and
the other the production plan. Before assigning people to certain lines or
positions, their availability, their capabilities and ideally also their preference
need to be checked by accessing a database. Capabilities of operators include
their resilience status, among other data, such as, passed trainings, skills, and
medical conditions. After all input data is collected, the allocation of workers
is done in two stages, where both stages should be supported by the decision
support system. In the first stage, possible allocation scenarios are identified,
considering the competence and availability of the workers. From all iden-
tified scenarios it needs to be checked which of them are feasible. Feasible
scenarios should be able to reach the daily production goal, should respect
product quality, and are realizable in terms of machine and resource capac-
ities. The best fitting solution is chosen and may include minor adjustments
to fit the workers preferences and priorities, as this is the main goal in this
use case scenario. If an optimal solution is found the result is hand over to
production.
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RESILIENCE SCORE COMPUTING

The conceptual framework of the resilience risk stratification model (RRSM)
is presented in Figure 1. It illustrates our hypotheses on how the accumula-
tion of the negative consequences of stress has a cyclical nature and how
it can contribute to a loss spiral. This framework is based on the Trans-
actional Model of Stress and Coping (Lazarus & Folkman, 1987), the Job
Demands-Resources Model of Burnout (Bakker & Demerouti, 2007), the
Effort-Recovery Model (van Veldhoven, 2008) and the Conservation of
Resources Theory (Hobfoll, 2001), as well as the WearMe project (deVries
et al., 2019).

Psychophysiological strain accumulates when (job) demands, such as time
pressure or physical workload are appraised as a threat due to inefficient
available resources to adaptively copewith them (Lazarus& Folkman, 1987).

In our proposed work on RRSM,we are estimating the Physiological Strain
Index (PSI) as well as the Cognitive-Emotional Strain Score (CES, Haid et al.,
2024). The workload of a worker is estimated using a heuristically defined
measure, as follows,

CESscore,t = η ∗

{
1−

HRVt −HRVmin

HRVmax −HRVmin

}
+

Tskin,t − Tskin,min
Tskin, max − Tskin,min

+
HRt −HRmin

HRmax −HRmin
,

with a pre-defined heuristically selected η=8 according to previous experi-
ence (Haid et al., 2024).

Based on the threat of fundamental strain, an individual’s need for recov-
ery, characterized by feelings of exhaustion and reduced vigor to undertake
new activities, depends on the individual’s ability to utilize the available
resources to adaptively cope with the demands (Lazarus & Folkman, 1987;
Bakker & Demerouti, 2007). A high need for recovery (i.e., little vigor to
undertake activities) has a negative impact on an individual’s resources to
appraise and cope with new demands, such as, a demanding work that should
be allocated to workers. However, recovery may counteract and alleviate this
effect (van Veldhoven, 2008).

In our specific RRSM model, we model a measure of mental exhaustion
in terms of the daily total strain score as a function of data from wearable
sensors and PSI- and CES-oriented data analytics (Figure 1). The accumulat-
ing effect of mental exhaustion is then represented by another functional that
integrates daily score contributions within a predefined extent of recency. The
resilience score that would represent the risk stratification, as it is modelled
at this stage, is then further outlined by an inverse function of the mental
exhaustion. This score implicitly represents an orientation of the long-term
resilience dynamics rather than a short-term construct.

The RRSM framework also includes a cyclical nature that is supported
by the Conservation of Resources theory (Hobfoll, 2001), which states that
initial loss of resources increases one’s vulnerability to stress. Since addi-
tional resources are necessary to battle stress, this may lead to a depletion of
resources or a loss spiral. The motivation of the development of this RRSM
framework is to prevent this loss spiral for the benefit of the worker as well
as the economic impact of the manufacturing company.
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Figure 2: Modelling wearable-based measurements and resilience scores into the
worker’s resilience risk stratification model (RRSM) that is based on the transactional
model of stress and coping (Lazarus & Folkman, 1987), job demands-resources model
of burnout (Bakker & Demerouti, 2007), effort-recovery model (Van Veldhoven, 2008),
conservation of resources theory (Hobfoll, 2001), and the conceptual framework for
employee‘s resilience (de Vries et al., 2019).

The resilience risk stratification is of central importance for the allocation
of workers for specifically stressful work. Persistent stressful work can have
an impact on the mental exhaustion, and this is an important parameter for
the overall resilience risk stratification as a key objective in the work of Dig-
ital Human Factors Analytics. The resilience score would indicate levels of
risks for decision support to the manager that assigns work to workers and
can have an important impact on the complete economic situation of the
manufacturing company. Finally, these scores can provide a relevant input
to optimization routines that would provide higher long-term benefits to the
worker, to the company and ecologically relevant aspects.

Figure 3: Stages of the computation of the resilience score that underlies the resilience
risk stratification model (RRSM).
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RESILIENCE MONITORING

Figure 2 represents the major processing stages of the resilience risk strati-
fication model. In the first stage, the Daily Strain Score (DSC) is produced.
This score integrates contributions from the Physiological Strain Index (PSI)
as well as from the Cognitive-Emotional Stress (CES) score (Haid et al.,
2024) into an integrated quantity, i.e., DSC(n) for each individual day n.
The integrated input to DSC(n) is normalized by the Sigmoid function.

In a next processing step, the individual components DSC(n) of each day
within a pre-defined time window, exemplary n = 20 working days, are inte-
grated being weighted by recency, downscaling all contributions of DSC(n)
with an exponential decay function with a time constant τ . We then build
a weighted and normalized sum from these weighted contributions for each
day. This quantity eventually represents an equivalent of a score for aspects
of mental exhaustion or the “need for recovery” (NFR).

Figure 4: Resilience monitor with GUI for the estimation of resilience scores (profile,
bottom) from physiological and cognitive-emotional strain computation (profiles, top).

Finally, the “resilience score” (RS) is computed, in a first degree of estima-
tion, as RS = 1.0-NFR. RS represents the resources that would be reduced by
the size of the NFR outcome by a linear scale. Resilience risk stratification
will be provided by means of pre-defined thresholds that will be determined
in a future field study concerning input of experts from the industry and from
health psychology.

Figure 3 represents the “ResilienceMonitor”as a component that provides
a visualization of the time course of various types of strain synchronized with
the resilience score. The diagram extends from a pre-selected day for decision-
making to a time window of recency with a pre-defined number of working
days, neglecting so far rehabilitation periods, such as, weekends and vacation.
In this first stage of the development, we selected a time window of n = 20
working days.

In Figure 3, the top sub-window represents a sample time course of PSI
and CES scores, for an exemplary decrease in both strain scores. Conversely,
the resilience score is visualized to increase with a certain inertia and delay.
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The individual quantities of PSI and CES that are associated with each day
are each computed to represent the physiological and cognitive-emotional
strain, respectively, of a single day. The calculation of this single representa-
tive quantity is on-going research, however, in a first degree of estimation,
we are using mean descriptors of the PSI as well as the CES score, respec-
tively, from measurements of experimental work within time intervals of ca.
30 minutes. Figure 3 provides a characteristic example of the generation of
PSI and CES scores in the JR Human Factors Lab, Graz, Austria. The result-
ing strain scores of limited-time experimental sessions are finally mapped to
a Daily Score (i.e., DSC(n)) of a specific day n, representing input data for
the computation of the resilience score.

Figure 5: Monitor for the visualization of vital data synchronized in real-time. The
dashboard to the right shows the time course of raw/processed data (top), risk lev-
els in semaphore-like color code (mid) and recommendations for contingency actions
(below).

Figure 4 shows an expert-oriented monitor for the visualization of vital
data synchronized in real-time with the physical activity on the treadmill (left)
that causes physiological strain.

Figure 5 demonstrates another specialized monitor for the visualization of
vital data synchronized in real-time with the cognitive-emotional strain expe-
rienced during a cognitive task (left), with gaze data (green point) within
the scene. With eye tracking glasses, additional psychophysiological infor-
mation can be investigated via the analysis of eye movement features. In first
explorative studies on cognitive-emotional strain we involved the participant
into a challenging cognitive load task, i.e., the n-back task (Kirchner, 1958;
Jaeggi et al., 2003) that requires excellent short-term memory to appropri-
ately react in time to a sequence of images presented to the operator. The
psychophysiological response to this task is monitored being synchronized
with the video of the participant in action (see Figure 5), as well synchro-
nized with the video of the egocentric camera oriented towards the screen
with gaze visualization in real time. In the monitoring dashboard, real-time
raw data output of skin temperature, heart rate, eye tracking based cognitive
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load score, with a resulting metadata stream represented by a so-far heuris-
tic index for cognitive-emotional strain. below again the synchronized risk
stratification in traffic light-based color coding.

Figure 6: Monitor for the visualization of vital data synchronized in real-time with the
cognitive-emotional strain experienced during a cognitive task (left), with gaze data
(green point) within the scene. The dashboard to the right shows the time course of
raw and processed data (top), risk levels in traffic light-based color coding (mid) and
recommendations for contingency actions (below).

CONCLUSION AND FUTURE WORK

This work proposed a complete framework for the integration of wear-
able biosignal sensor information into a resilience stratification. A major
long-term application in the production environment is to prevent sickness,
absenteeism, and at the same time, improve motivation and well-being for
the company. The focus of this first prototype is on the representation of the
time course of resilience; more refined representations of strain at the work-
place and rehabilitation, such as, considering weekends and vacation, will be
outlined in the future.
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