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ABSTRACT

In the life-threatening work of action forces, a decision support system (DSS) must pro-
vide a software application that should improve a mission decision maker’s capability
to make decisions. This requires analysing large amounts of data and to present and
visualize the best possible options available. In case of first responders, where errors in
decision-making can have fatal consequences, timely identification of increased risk of
physiological collapse, insufficient cognitive readiness and lack of situation awareness
is mandatory. This paper therefore introduces our Semantic Decision Support System
(SDSS) that can apply intelligent analytics on data from wearable biosignal sensors, to
provide feedback in terms of risk stratification. It also includes a recommender engine
that identifies the best next action at team management level. Its novelty lies specif-
ically in the combination of various multimodal data streams each being equipped
with assessment modules, risk stratification and recommender engines in order to
finally combine various aspects of decision support that is based on psychophysio-
logical measurement technologies. All relevant data is systematically merged into an
advanced expert dashboard, providing a comprehensive platform for the continuous
real-time monitoring and visualization of critical information. This capability enables
the ongoing assessment of risk levels associated with a diverse group of action forces.
The centralized dashboard serves as a powerful tool, enabling careful surveillance and
prompt response to emerging risks across a broad spectrum of operational scenarios.

Keywords: Estimated physiological strain, Cognitive-emotional stress, Situation awareness,
Semantic decision support, Expert dashboard

INTRODUCTION

In critical operations like those carried out by action forces, it is vital to
quickly spot an increased risk of physiological collapse, insufficient cognitive
readiness or lack of awareness, since mistakes in decision-making can be fatal.
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This highlights the need for a Semantic Decision Support System (SDSS)
designed to assist decision makers in the field by intelligently analysing data
from wearable biosignal sensors in real-time. We implemented such a system
that provides feedback through risk stratification and suggests the best next
action at the team management level. Its uniqueness stems from combining
multiple processing streams, each with assessment modules, risk stratifica-
tion, and recommender engines. This unification addresses various aspects of
decision support based on psychophysiological measurement technologies.

The central component of the DSS relates to the assessment of physiologi-
cal risk, in particular heat strain risk. It computes the Modified Physiological
Strain Index (PSI*) and applies a rule base for the classification into risk levels
from PSI, heart rate, and estimated core body temperature data. Furthermore,
various risk levels and duration of physiological strain are further related
to recommended actions, such as, resting or rehydration. A second com-
ponent provides a heuristic model of the cognitive-emotional stress that
is associated with risk levels for reliable decision-making. The third com-
ponent applies a mapping from cardiovascular bio-signals, such as, heart
rate and heart rate variability, to quality levels of situational reporting.
This Machine Learning-based estimation of various dimensions of situation
awareness was developed by Paletta et al. (2022) and enables to estimate risks
for increased error rates in (i) perception, (ii) understanding semantic context
and (iii) projection of relevant risk-bearing developments in a scenario. A
fourth component is based on the measurement of lactate concentration and
provides another physiological risk stratification. Currently, these data are
collected using standard lactate measurement technologies without wearable
sensing capability.

The SDSS is linked to an Expert Dashboard for the monitoring and visu-
alization of relevant information in real-time. It enables the tracking of risk
levels for a large number of first responders, provides capabilities to switch
between individual persons linked with the presentation of synchronized raw
and processed data over time, as well as depicting the risk levels associated
with the raw data, and recommended actions over time.

RELATED WORK

Decision support systems have become indispensable in many areas, espe-
cially in life-threatening situations to which first responders are regularly
exposed to. For this exact reason, there are already multiple research projects
focussing on decision support systems based on biosignals. The US-based
R&D project called HAZMAT developed a new system called REaCH (Fruh-
ling et al., 2020). The REaCH system includes real-time health monitoring
of first responders through wearable devices that capture individual health
parameters and exposure to hazardous materials. The biomonitoring plat-
form designed by Rodrigues et al. (2018) integrated different biomedical
systems to enable the acquisition of real time Electrocardiogram (ECG), com-
putation of linear Heart Rate Variability (HRV) features and collection of
perceived stress levels. Tartare et al. (2018) developed a system that was com-
posed of a lightweight garment integrating a number of sensors measuring
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the wearer’s physiological state and a microcontroller permitting to gather
all measured data and make data-based prediction on the wearer’s health
state, stress and fatigue with the help of a local decision support system.

In comparison to all these projects, we are introducing a semantics-based
DSS which, according to Jain (2020), consists of three components that are
all supported by semantic technologies and integrated in such a way that
they fulfil the purpose of a specific service. The three components are: (i) the
knowledge base which represents and stores the domain knowledge required
by the DSS, (ii) the model base, with the whole algorithmic that generates
recommendations and provides the required decision support and (iii) the
user interface as an information exchange between the user and the sys-
tem and for the visualisation of all results from the DSS. Especially in the
healthcare sector, there already exist many semantic technologies that sup-
port the decision-making in different areas according to Mishra et al., 2018
and Dalal et al., 2019. A large number of decision support systems for large-
scale disasters and emergency management (Hassan and Yun-He, 2016) also
exists. Still, to the best of our knowledge, there does not yet exist a semantic
DSS for the advising of first responders.

SEMANTIC DECISION SUPPORT SYSTEM

Figure 1 demonstrates in particular the implementation of the various DSS
components that are modelled with respect to different types of risks that
have been defined based on different psychophysiological variables of strain.
These specific components of the DSS are outlined within the overall con-
tainer of the “Human Factors Analytics DSS” (HFA-DSS) in the following
sections. These different modules of HFA-DSS referring to (i) the physio-
logical strain (PS-DSS), (ii) the situation awareness-related impact of phys-
iological strain (SAW-DSS), (iii) the cognitive readiness-related impact of
physiological strain (CR-DSS), and (iv) the lactate-concentration-based DSS
component in the context of physiological strain (LC-DSS).

Figure 1: Schema of the semantic decision support system (SDSS) architecture.
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PHYSIOLOGICAL STRAIN (PS-DSS)

The proposal for the physiological strain modelling, in line with Buller et al.
(2008), consists of using PSI as a starting point in the physiological strain
assessment, where the classification labels were assigned based upon PSI≥7.5
means “at risk”, and PSI < 7.5, which means “not at risk”. Given that the
PSI value, presented by Buller et al. (2008) is based on core body temper-
ature, and considering that our PSI* uses the skin temperature instead, we
concluded after analysing experimental data that 6 is a better PSI* thresh-
old for assessing physiological risk. Once an “at risk” classification has
been made, additional physiological parameters could act as a second step
validation of the physiological state of the first responder (i.e. hear rate
thresholds, skin temperature thresholds). Yokota et al. (2005) established
that, when using heart rate and skin temperature to assess physiological strain
risk, a reasonable classification boundary would deal effectively with three
conditions:

1. high heart rate and high skin temperature indicate “at risk”,
2. high heart rate from exercise and lower skin temperature indicate “not at

risk”,
3. high skin temperature, regardless of heart rate, indicates “at risk” unless

contextual information suggests otherwise.
Keeping in mind that the study of Yokota et al. (2005) focused on

heat strain, it should be considered to add another boundary to account
for exposure to cold environment that would be the expected scenario
for mountain rescuers. For this reason, the boundary condition for cold
exposure would be:

4. very low skin temperature, regardless of heart rate, indicates “at risk”.

HEART RATE THRESHOLDS

Fatigue is related to sustaining a high oxygen uptake (VO2) or heart rate
(HR) (Astrand and Rodahl, 1986). First responders are reported to encounter
many hazardous occupational conditions, which means they must work at
high exertion levels during strenuous work activities in variable work shifts
(Rodríguez-Marroyo et al., 2012). Physiological limits for heavy work have
been set to prevent workers from overload. These limits define the maximal
sustainable workload, which should not be exceeded permanently during the
working time and are usually defined as upper limits for physiological per-
formance. The most frequently applied limits are prescribed as a percentage
of maximal oxygen uptake (% VO2max) or maximal heart rate (% HRmax),
representing the individual strain of a person.

Wu and Wang (2001) established that for high-intensity work, the maxi-
mum acceptable work duration for individuals working at 60% of VO2max
(∼75% HRmax) is 18.8 min, and 6.5 min when working at 70% VO2max
(∼85% HRmax). In terms of heart rate, the maximum acceptable work dura-
tion would be 4 min for an individual working at 90% HRmax (∼80%
VO2max), 9 min at 80%HRmax (∼65%VO2max) and 18 min at 70%HRmax
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(∼50% VO2max). These threshold values, by contrast, are based on the pop-
ulation of untrained workers. First responders have to be physically fit to
face up job-related tasks. This means they would have a higher cardiovascu-
lar capacity than the average work population (Perroni et al., 2010), which
means they could spend more time in each heart rate threshold.

Usually, a model that establishes three exercise intensity zones according
to the reference heart rate values corresponding to these thresholds is used: i)
low-intensity zone, below the aerobic threshold; ii) moderate intensity zone,
between the aerobic and anaerobic thresholds; and iii) high-intensity zone,
above the anaerobic threshold. Previous studies (Rodríguez-Marroyo et al.,
2012; Callender et al., 2012) have found the aerobic and anaerobic threshold
in first responders at ∼65 and ∼85% HRmax, respectively.

Leading to following heart rate thresholds for the physiological strain
model (Figure 2a):

Figure 2: Proposed heart rate thresholds (a) and skin temperature thresholds (b) for
the physiological strain model.

• Very high intensity zone (danger threshold)

– HR ∼100% HRmax for more than 1 minute indicates “at risk”
– HR > 90% HRmax for more than 2 minutes indicates “at risk”

• High intensity zone (danger threshold)

– HR > 80% HRmax for more than 15 minutes indicates “at risk”
– HR > 70% HRmax for more than 35 minutes indicates “not at risk”
– HR > 60% HRmax for more than 40 minutes indicates “not at risk”

• Moderate intensity zone (warning threshold)

– HR > 80% HRmax for more than 5 minutes indicates “at risk”
– HR > 70% HRmax for more than 20 minutes indicates “not at risk”
– HR > 60% HRmax for more than 25 minutes indicates “not at risk”

• Low intensity zone

– HR ≤ 60% HRmax indicates “not at risk” if other parameter are
“within thresholds”
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SKIN TEMPERATURE THRESHOLDS

The inability to regulate core body temperature during work in the heat is
perhaps the most direct index of occupational thermal strain (Notley et al.,
2018). Excessive rises (≥40.0 ◦C) or drops (≤ 27 ◦C) in core body tempera-
ture can rapidly lead to organ failure and death if medical care is unavailable
(NIOSH, 2016). As such, for heat strain, it is recommended that core body
temperature should not exceed 38.0 ◦C and 38.5 ◦C for extended periods for
unacclimatised and acclimatised workers, respectively (ACGIH, 2017). How-
ever, a core body temperature limit of ∼39.5 ◦C has been accepted in short
periods for compensable conditions in acclimatised subjects (Sawka et al.,
2001). Regarding cold strain, the main goal is to prevent the core body tem-
perature from falling below 36 ◦C. If the core body temperature falls below
35 ◦C, there is a risk of hypothermia, whereas if the core body temperature
reaches 27 ◦C, unconsciousness occurs and can eventually be fatal (ACGIH,
2018).

The body surface (skin) represents the medium between the body core and
the external environment. As such, skin temperature is not only influenced
by environmental and clothing parameters but also by metabolic heat pro-
duction and autonomic heat loss responses (skin blood flow and sweating).
In cooler conditions, where cutaneous vasoconstriction minimises the ther-
mal gradient for dry heat exchange, regional differences in skin temperature
are extensive (Notley et al., 2018). However, in hotter environments or wear-
ing protective clothing, skin temperature rises and becomes more uniform as
increases in cutaneous vasodilatation facilitate blood-borne heat transfer to
the skin surface (Notley et al., 2018).

Based on the research the following thresholds for the skin temperature
(Tskin) where used (Figure 2b):

• Tskin > 38 ◦C indicates “at risk” (danger threshold)

• Tskin > 35 ◦C and ≤ 38 ◦C indicates “at risk” (warning threshold)

• Tskin > 27 ◦C and ≤ 35 ◦C indicates “not at risk” if other parameter are
“within thresholds”

• Tskin ≤ 27 ◦C indicates “at risk” (warning threshold)

DECISION RULES

Based on the presented thresholds for PSI*, heart rate and skin temperature
multiple decision rules have been defined together with recommendations for
the first responder and are shown in Table 1.
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Table 1. Decision rules for PS-DSS (risk levels + recommended actions).

Parameter Change Recommended Action

PSI* ≥ 6 for more than 5 min take a breath (2 min)
PSI* > 7 for more than 3 min take a break (5 min)
PSI* > 8 for more than 3 min take a long break (>10 min)
PSI* > 9 for more than 3 min Stop working + Go to recovery
HR ∼100% HRmax more than 1 min take a short break (5 min)
HR > 90% HRmax more than 2 min take a short break (5 min)
HR > 80% HRmax more than 15 min take a long break (>10 min)
HR > 80% HRmax more than 10 min slow down (the pace of work)
HR > 60% HRmax more than 20 min slow down (the pace of work)
HR > 60% HRmax more than 40 min take a long break (>10 min)
Tskin > 38 ◦C more than 5 min Finish service + Go to recovery
Tskin > 37 ◦C more than 5 min take a long break (>10 min)
Tskin > 36 ◦C more than 15 min take a short break (5 min)
Tskin ≤ 27 ◦C and HR > 50% HRmax speed up (the pace of work)
Tskin ≤ 27 ◦C and HR < 50% HRmax Finish service + Go to recovery

SITUATIONAL AWARENESS (SAW-DSS)

This AI-based predictive model of first responders under increased stress pro-
vides estimators for levels of situation awareness integrating biosignal data
and predicts the performance of a situation report, which is critical at the
emergency site (Paletta et al., 2022). Situational awareness and decision-
making processes were first represented by a regression tree-based estimator,
in the line of providing highly transparent methodology within explainable
AI. A machine learning method was used to estimate biosignal-based human
states and map these to situation awareness-driven risk levels, which further
map to recommended actions.

In a further step, a neural network-based classifier (Support Vector
Machine; SVM; Hsu et al. 2016; Chang and Lin, 2011) was deployed that
predicts three levels (L1, L2, L3) of risk in the accuracy of a situation report.
These levels refer to “perception”-, “understanding”-, and “projection”-
specific analyses. Each of the SA levels can reach a SAW (situation awareness)
degree of 1 (“low awareness”), SAW degree of 2 (“mid awareness”) or SAW
degree of 3 (“high awareness”). Note that the respective AI-based signals
(degrees) are slightly noisy and were smoothed by a mean filter in order to
get a clearly stable behaviour.

The grades therefore obtained in terms of “situation awareness degrees”
might then be assigned to “risk stages” in an essentially reciprocal manner.
The final model was solely trained on HR and HRV-based data and achieved
a prediction accuracy between approx. 66–69 % for situation awareness-
based classification.
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COGNITIVE READINESS (CR-DSS)

The cognitive readiness of the first responder was estimated using a heuristi-
cally defined measure called the cognitive-emotional stress (CES) score:

CESscore = HRVfactor ∗

(
1−

HRV−HRVmin

HRVmax −HRVmin

)
+

(
Tskin − Tskinmin

Tskinmax − Tskinmin

)
+

(
HR−HRmin

HRmax −HRmin

)
(1)

For the HRVfactor a value of eight was used, according to previous expe-
rience. The CES parameter therefore mainly depends on the relative HRV
value.

For the decision support system, the conditions for individual levels are
the result of previous work and were developed empirically, as follows:

• The first responder is in “Danger” status if

– the CES value has been above 8 for more than 5 minutes
– the CES value was above 6.5 for more than 10 minutes

• The first responder is otherwise in “Warning” status if

– the CES value was above 8 for more than 2.5 minutes
– the CES value was above 6.5 for more than 5 minutes

• and in “NoRisk” status if none of the above conditions applies within the
last 20 minutes.

LACTATE COMPONENT (LC-DSS)

Over the past nearly five decades, blood lactate thresholds have emerged as
vital tools in assessing endurance performance. The percentage of VO2max at
which individuals can sustain activity for an extended duration is associated
with fatigue, partly caused by lactate accumulation in the muscles as the body
increasingly relies on anaerobic pathways to support the work being done.
Consequently, the accumulation of lactate in the bloodstream serves as an
indicator of fatigue in humans and offers a means to assess the intensity of
exercise relative to an individual’s physiological limits (Tipton et al., 2012).

In current literature, there is a widespread consensus among authors to
define work intensities using a three-phase and two-threshold model (Seiler
and Tønnessen, 2009). Generally, the first lactate threshold occurs at oxygen
consumption levels of 65–80% of VO2max, while the exercise intensity corre-
sponds to a lactate concentration of 2 mmol·L−1 (Kindermann et al., 1979).
On the other hand, the second lactate threshold is defined at the workload
when blood lactate concentration reaches approximately 4 mmol·L−1 (Heck
et al., 1985).

Considering all the aforementioned information, the three-phase intensity
zones, considering lactate can be outlined as follows:
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• Low-intensity zone: below 2mmol·L−1 of blood lactate (∼60%ofHRmax)
indicates a “not at risk” level, provided that other contextual parameters
are within thresholds.

• Moderate intensity zone: blood lactate values above 2 mmol·L−1 and
below 4 mmol·L−1 (∼60–80% of HRmax) are still considered “not
at risk.”, but caution should be taken if blood lactate approaches 3
mmol·L−1.

• High-intensity zone: blood lactate above 4 mmol·L−1 (∼80% of HRmax)
for more than 2 minutes indicate an “at risk” danger threshold.

Leading to following decision rules for DSS (risk level and recommended
actions):

• > 4 mmol·L−1 more than 1 min take a short break (5 min)
• > 3 mmol·L−1 more than 10 min take a breath (2 min)
• > 2 mmol·L−1 more than 40 min slow down (the pace of work)

EXPERT DASHBOARD

The implementation of the Decision Support System (DSS) required a specific
visualisation in order to monitor and validate the application of dedicated
risk levels and recommender-based information. The time sequence of the
captured bio signals and the derived and calculated risks by the DSS as well
as recommendations made during the field trials were visualised and analysed
in real-time via a novel dashboard configuration. For this purpose, a traffic
light visualisation for various risk levels and recommendations of multi-stage
urgency was implemented to provide experts an intuitive presentation of
selected variables. The highly flexible dashboard is suitable for focused inves-
tigations of scientific experts as well as for first responders and emergency
service experts. The system is configured in a modular manner and enables
interfacing with the various functional components of the Decision Support
System in real-time. Furthermore, this system is easily extendable towards
novel data structures, e.g., to include innovative sensor data that might be
gathered in the future (Figure 3).

Figure 3: Expert dashboard of the semantic decision support system (SDSS).
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CONCLUSION

The Semantic Decision Support System (SDSS) presented in this work is an
innovative solution for enhancing decision-making in life-threatening sce-
narios, particularly for first responders. By integrating intelligent analytics
on biosignals from body-worn sensors, the SDSS offers a comprehensive
approach to risk stratification and decision support at team management
level. Its innovative combination of multimodal processing streams, psy-
chophysiological measurement technologies, and Machine Learning-based
situation awareness estimation provides a holistic perspective for reliable
decision-making.

The core of the SDSS focuses on estimating physiological risk, specifi-
cally heat risk, through the modified physiological strain index (PSI*) and
a rule base for classification. It also incorporates a heuristic model for
cognitive-emotional stress and a component based on lactate concentra-
tion measurement for additional physiological risk stratification. The SDSS
is connected to an expert dashboard, enabling real-time monitoring and
visualization of relevant information for multiple first responders.

In essence, the SDSS represents a powerful tool that minimizes errors
in decision-making during critical situations, offering timely and informed
support to mission leaders and first responders.
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