Cognitive Computing and Internet of Things, Vol. 124, 2024, 33-42 AH FE
https://doi.org/10.54941/ahfe1004701 |nternational

Deep Learning Based Human Activity
Recognition in First Responders Wearing
a Sensorized Garment

Edoardo Spairani', Rita Paradiso?, and Giovanni Magenes'

TElectrical, Computer and Biomedical Engineering Department, University of Pavia,
Pavia, Italy
2Smartex S.r.l., Polo Tecnologico Navacchio, Pisa, Italy

ABSTRACT

Safety and well-being of first responders operating in hazardous environments are
paramount considerations. These individuals routinely find themselves immersed in
dangerous situations, leading to heightened levels of both physical and mental stress.
In this context, a system for the automatic and real-time monitoring of first responders’
(FRs) activities could play an important role in timely identifying potentially dangerous
situations. The present paper addresses this issue and introduces a Deep Learning (DL)
based Human Activity Recognition (HAR) approach for the automatic identification of
tasks carried out by first responders. In our proposed framework, we leverage the use
of a garment equipped with various integrated sensors to capture both physiologi-
cal and inertial measurements during the course of first responders’ duties. For this
aim we harness the power of DL techniques, specifically recurrent neural networks
(RNNs), aiming at achieving an accurate classification of a limited set of diverse tasks.
To validate the efficacy of our proposed system, we conducted the evaluations on a
comprehensive hold-out set compiled from real-world scenarios, involving FRs. The
results of our evaluation showcase not only high accuracy (0.9813) but also robust
reliability in classifying the activities undertaken by the operators. The implications of
our deep learning-based activity recognition framework extend beyond mere classi-
fication, since gaining insights into the risk associated to a particular task performed
could enable the development of more effective, timely and safer emergency response
strategies.
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INTRODUCTION

In recent years, wearable devices have become an established reality, finding
application in an expanding array of fields (Smith et al., 2023). Wearables
that capture physiological signals, in particular, have proliferated, transcend-
ing their traditional role in medical applications. Presently, these wearables
play a pivotal role as primary data sources in sophisticated systems that
seamlessly integrate with human activities across various domains, including
work, home, and sports. This evolution underscores the growing centrality
of physiological wearables as indispensable components in complex sys-
tems designed to interact with individuals throughout their daily routines
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(Smuck et al., 2021). Over the last few years, a great attention has been posed
on wearable systems aiming at supporting operators working in high risk con-
ditions (Curone et al., 2012; Bonfiglio et al., 2011; Magenes et al., 2011).
The present work is situated within the context of the European project
SIXTHSENSE (https://sixthsenseproject.eu), which goal is to develop intel-
ligent solutions for supporting at-risk operators such as firefighters, forest
workers, mountain rescuers etc., whose daily work duties expose themselves
to potentially hazardous situations. Within this overarching framework,
our presented study aligns with the broader mission of SIXTHSENSE by
contributing insights into the development of intelligent systems that can
enhance the safety and efficiency of first responders (FRs) in the face of their
challenging work environments.

More in detail, the overarching goal of the present study regards the devel-
opment and implementation of a Deep Learning (DL) based Human Activity
Recognition (HAR) approach, based on physiological and inertial signals col-
lected through wearable garments. In a working context that continuously
exposes first responders to heightened physical and mental stress, a system
for the real-time monitoring of FRs activities could play an important role
for their safeguarding.

This task has yet been attempted by our research group in the frame of the
European Project ProeTEX (PROtective Electronic TEXtiles for emergency
operators) (www.proetex.org), which aimed at demonstrating the suitability
of wearable technologies to improve the safety, efficiency, and coordination
of emergency operators, such as fire fighters or Civil Protection rescuers
et al.,, 2010; Curone et al., 2010). In particular, Curone et al. proposed a
simple system to classify the performed activity based on the fusion of a set
of inertial-derived features as well as heart rate (HR) (Curone et al., 2010).

In the present work we want to move further, by exploiting the inherent
flexibility of DL, proposing a system, relying on recurrent neural networks
(RNNs), as implemented for example in (Paydarfar et al., 2020) (Murad
et al., 2017), hopefully capable of accurately classifying a limited set of 8
typical human actions (standing, sitting, laying, walking, running, jumping,
walking uphill, walking downbhill) which are common both to everyday life
scenarios and to first responders’ duties. Particularly, the developed system
consists of a Gated Recurrent Unit (GRU) net (Cho et al., 2014) which is fed
with a set of physiological and inertial recordings collected through a wear-
able garment. The adoption of RNNs in our approach serves to enhance
the efficiency of feature extraction by enabling the automatic identifica-
tion of intrinsic features embedded within the signals. Unlike traditional
machine learning methods that rely on manual or pre-defined feature extrac-
tion techniques (Gorjani et al., 2021), RNNs possess the inherent capability
to capture temporal dependencies and patterns present in sequential data.
This adaptability allows our model to autonomously discern and extract
nuanced features, providing a more comprehensive understanding of the
dynamic information encoded within the signals. By leveraging the power
of RNNs, our approach not only streamlines the feature extraction pro-
cess but also harnesses the rich contextual information encapsulated in the
raw signals, contributing to effectiveness of the classification process of our
approach.
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The rationale behind considering the integration of accelerometric and
physiological signals is rooted in the fact that each source provides only par-
tial information concerning the actual level of physical activity of a subject
(Brage et al., 2005). While accelerometers can identify a wide array of actions,
they fall short in assessing the physical effort exerted during a movement
(e.g., they cannot distinguish between activities such as “walking on a level
surface” and “walking uphill”) (Fehling et al., 1999). Conversely, physiolog-
ical parameters like heart rate (HR) capture the physical effort involved in
an activity (using the previous example, HR is higher when a subject “walks
uphill” compared to “walks on a flat surface”), but they may be subject to
external influences such as psychological stress or environmental conditions.

The primary aim of this work is not solely to create a model capable of
identifying a highly specific set of activities. Rather, the goal is to explore
how the combined use of a particular type of wearable devices, coupled with
advanced deep learning methods, has the potential to lead the development
of intelligent systems capable of providing efficient support to operators dur-
ing their work activities. Our work serves not only as a proof of concept,
but also as an indication of how, in subsequent phases, the model could be
further trained to recognize specific events intrinsic to the performed work
activities. By demonstrating this broader potential, we highlight the capacity
for intelligent systems to adapt and enhance their functionality based on the
unique demands of professional tasks.

MATERIALS AND METHODS
The Employed Sensorized Garment and the Collected Signals

A scheme depicting the garment employed in this study is illustrated in
Figure 1 and consists of a wearable textile system produced by Smartex srl.
(https://www.smartex.it/). This system, built upon the Wearable Wellness
System (WWS), underwent modifications and tailoring to fulfill the specifi-
cations of the SIXTHSENSE project, wherein various sensors are integrated
into a unified wearable prototype. More specifically, for what concerns phys-
iological signals, the garment is equipped with textile electrodes for the ECG
acquisition and a textile piezoresistive sensor for breath measurement, based
on the thorax expansion caused by breathing. These sensors are made of
yarns and are fully integrated into the textile structure that composes the
garment.Kinematic measurements, on the other hand, are detected through
a InvenSense MPU-9250 IMU. The latter MPU-9250 is a multi-chip module
(MCM) consisting of two dies integrated into a single QFN package. One
die houses the 3-Axis gyroscope and the 3-Axis accelerometer; the other die
houses the AK8963 3-Axis magnetometer. Hence, by using this system, 11
signals are registered at each acquisition, i.e., 2 physiological tracings (ECG
and breathing signal) and 9 inertial signals from the IMU (3 readings from
the accelerometer, 3 from the magnetometer and 3 from the gyroscope). ECG
data are collected with a sample frequency (fs) of 250 Hz, while respira-
tory signal and IMU measurements are collected with fs = 25 Hz. Starting
from ECG and breathing signals, heart rate and breathing rate series are then
obtained with a classical peak detection algorithm based on the one presented
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by Pan and Tompkins (Pan et al., 1985) and then resampled at the same
sample frequency of the inertial signals (fs = 25 Hz). An illustration exempli-
fying the total set of kinematic signals, together with the two series derived
from physiological acquisitions (HR and BR) collected within a 50 seconds
acquisition is shown in Figure 2.

RU.S.A

Textile
piezo

Figure 1: lllustration of the employed WWS. The vest is equipped with two textile
electrodes to collect the ECG signal, one piezoresistive textile sensor to measure respi-
ratory signals and a data logger (RUSA device). A9 d.o.f IMU integrated in the R.U.S.A
device leads to collect 9 kinematic tracings at each acquisition (3 readings from the
accelerometer, 3 from the magnetometer and 3 from the gyroscope).
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Figure 2: lllustration of a 50 seconds excerpt for the 3 magnetometer, accelerometer
and gyroscope readings and the two derived measures (heart rate and breathing rate
signals) acquired through the Smartex WWS.
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Data Collection: Training and Testing Set

To facilitate the training of the proposed neural architecture, a controlled data
collection process was undertaken. Three participants were enrolled (2 males
and 1 female aged 27+5). Participants were equipped with the Smartex wear-
able garment and were asked to perform sequences of predefined actions,
encompassing typical activities in controlled environmental settings. Partic-
ularly 8 actions were considered: standing, sitting, laying, walking, running,
jumping, walking uphill and walking downhill. These activities are common
both to everyday life scenarios and to first responders’ duties. A corpus of 15
sequences with varying length was considered for the training phase. The lat-
ter were normalized to be in range 0-1 in order to facilitate the model training
and were split in 2 seconds chunks with a 0.5 stride. With this choice, each
input to the net consists of a tensor with 50 points in time and 11 dimensions,
one per each signal. To avoid training biases a process of class balance was
applied to ensure each activity was equally represented within the training set.
After the training phase, the performances of the proposed HAR model were
tested on a hold out test set including 30 signals acquired in real life scenar-
ios, involving FRs. Acquisitions were performed during scheduled sessions
in Bormio (Italy, 2022), Postojna (Slovenia, 2022), Kopaonik (Serbia, 2023),
Rijeka (Croatia, 2023) over the three-year lifespan of the European project
SIXTHSENSE.

The Developed Neural Architecture

The proposed neural architecture is illustrated in Figure 3. Our model archi-
tecture, implemented using the Keras deep learning framework, comprises
a sequential stack of Gated Recurrent Unit (GRU) layers, designed to cap-
ture and learn temporal dependencies within sequential data. The model
begins with a GRU layer consisting of 128 units and is configured to return
sequences, providing a deeper understanding of the input data’s tempo-
ral dynamics. A dropout layer with a probability of 0.4 is incorporated
after the first GRU layer to prevent overfitting. The subsequent layers
follow a similar pattern, incorporating additional GRU layers with decreas-
ing units (64 units and 32 units, respectively) and maintaining the return
sequences configuration. Dropout layers are interspersed after each GRU
layer to further enhance the model’s generalization capabilities. Following
the GRU layers, densely connected layers contribute to the model’s abil-
ity to capture non-linear dynamics. Two dense layers with 32 units each
and ReLU activation functions are introduced, providing the network with
the capacity to understand complex patterns in the learned features. The
final dense layer consists of 8 neurons with a softmax activation function
which returns the probability of the input chunk to belong to one of the
8 possible activities. The model training was stopped by the adopted anti
overfitting criteria after 200 epochs. Adam optimizer was employed with a
learning rate of le-4 and categorical cross entropy was considered as loss
function.
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Figure 3: Scheme of the proposed neural network. The model consists of a series of 3
GRU layers interspersed by as many dropout layers. These blocks are followed by two
dense layers with ReLU activation functions, always interspersed by dropout layers.
The final layer consists of a dense one, with one neuron for each activity to classify
and with Softmax activation.
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RESULTS

The obtained results are summarized in the confusion matrix in Table 1, the
analysis of which reveals the trained model’s accuracy in classifying each of
the 8 activities considered. Static positions (‘stand’, ‘sit’, ‘lay’) were all cor-
rectly identified more than 98% of times and this underscores the model’s
adeptness in capturing subtle temporal dynamics inherent in stationary pos-
tures. Little misclassifications occurred, especially for what concerns the
“sitting” activity, which was confused 1% of times with both standing and
sitting postures. This may be attributed to various factors, including the inher-
ent variability in subjects’ heights and the diverse heights of objects on which
individuals may sit. Even for what concerns, instead, non-standing activities
it could be observed that the proposed DNN is able to achieve good classi-
fication performances. In particular, ‘running’ and ‘walking uphill’ activities
were correctly spotted 98% of times, while ‘jumping’ and ‘walking down-
hill” were correctly identified 99% of times. The activity of “walking” seems
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to be the most misclassified one. More in detail the latter was classified as
“walking uphill” (2% of times) and “walking downhill” (2% of times) and
1% of times as “running”. These nuanced misclassifications merit further
investigation to refine the model’s discriminative prowess, especially in dis-
ambiguating closely related activities. There’s however to take into account
that the confusion matrix shown in Table 1 summarizes the obtained DNN’s
performances on real experimental data; despite rigorous efforts, the label-
ing process may introduce limited errors. For example, instances where the
expected activity is ‘walking’ may contain few portions where the subject is,
for some reasons, ‘walking’. To quantify the overall performances of the pro-
posed DNN we performed the computation of diverse score metrics, which
are defined as follows (equations from 1 to 9):

Accura TP + TN 1)
u =
UMY = TP FPy EN + TN
Error = 1 — Accuracy (2)
TP
ReCClll = m (3)
TN
o 4
Specificity N 1 FP (4)
TP
Precision — — L
recision TP + FP (5)
EP
FPR = ——— 6
FP + TN (6)
2 TP
F1 score = TP+ EP + EN (7)
TP x FN
MCC = X (8)

J(TP + FP)(TP + EN)(IN + FP)(TN + EN)

K 2 x (TP x TN — FN x FP) 9
PP = P FPy x (FP 4 TN) + (TP + FN) x (EN+TN) )

FN, FP, TN and TP in equations respectively indicate the number of False
Negative, False Positive, True Negative and True Positive.

Performance scores obtained with the presented model are reported in
Table 2. The accuracy of 98.13% (error = 0.0187) reflects the overall cor-
rectness of the DNN’s predictions, demonstrating a high level of agreement
between predicted and actual classes and highlighting its robustness in min-
imizing prediction errors. This is consistent for what concerns the recall
(0.9813), which indicates the DNN’s ability to effectively capture positive
instances, showcasing its sensitivity to the presence of the target class. High
levels of specificity and precision are also achieved (0.9973 and 0.9813) and
the low false positive rate (FPR) of 0.27% signifies the DNN’s minimal ten-
dency to generate false alarms, ensuring a high level of precision in its positive
predictions. The F1 score, which provides a balanced measure of the DNN’s
precision and recall, has a value of 98.12% indicating a harmonious trade-
off between precision and sensitivity. The Matthews Correlation Coefficient
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(MCC) of 97.86 % reflects the strength of the relationship between predicted
and observed classifications, considering both true and false positives and
negatives. Finally, a Kappa value of 0.9143 reflects the DNN’s high level of
agreement between predicted and actual classes.

Table 2. Confusion matrix per activity.

Accuracy 0.9813
Error 0.0187
Recall 0.9813
Specificity 0.9973
Precision 0.9813
FPR 0.0027
F1 score 0.9812
MCC 0.9786
Kappa 0.9143

DISCUSSION AND CONCLUSION

In the present work we tackle the challenge of classifying a set of activities
performed by First Responders (FRs) using Deep Learning (DL), and par-
ticularly RNNs. Leveraging inertial and physiological data collected from
wearable devices, our focus extends beyond mere classification, delving into
the nuances of real-world scenarios faced by FRs. The efficacy of our DL-
based HAR approach is evaluated, shedding light on its potential to enhance
safety of operators working in hazardous environments. The presented DNN
based on GRU successfully classifies first responders’ activities, achieving an
overall accuracy of 98.13% and showcasing robust performance across var-
ious metrics. Beyond mere specific activity classification, the work serves as
a proof of concept, indicating the broader potential of the analyzed system
integrating the use of a wearable device and DL. In fact, the core concept
goes beyond the pursuit of the most efficient architecture or the classifica-
tion of specific actions. Respect to other existing works (e.g. Curone et al.,
2010) which focus on the detection of specific activities, our primary goal
is to demonstrate the potentials of combining DL techniques, specifically
RNNs, with signals acquired from high-quality wearable garments, such as
the WWS from Smartex s.r.I. This synergy is not only about accurate classifi-
cation but, more importantly, about playing a pivotal role in safeguarding
operators working in high-risk conditions. Additionally, this study marks
an initial stride toward the development of a real-time system which could
eventually be adopted in real life scenarios. A system of this kind could play
an important role in increasing safety of FRs, providing a means to con-
stantly monitor the physical and mental activity of operators in high-risk
environments, enabling the timely identification of potentially dangerous sit-
uations and allowing for more prompt intervention in emergency situations.
While the current study focuses on the classification of general activities,
future developments could delve into the analysis of specific high-risk actions,
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such as falling, to enhance the precision and applicability of the developed
system in real scenarios. Additionally, exploring how changes in physiolog-
ical parameters during the execution of these actions may indicate stress or
fatigue levels represents a promising avenue for further investigation. These
nuanced insights could contribute to a more comprehensive understanding
of the dynamics involved in high-risk scenarios, providing valuable. informa-
tion for the refinement and expansion of the proposed intelligent monitoring
system.
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