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ABSTRACT

Continuous and precise monitoring in the intensive care unit (ICU) are essential, partic-
ularly for patients with respiratory disorders necessitating mechanical ventilation, as
they represent a critical cohort. Hypoxia can be defined as a medical condition charac-
terized by an inadequate supply of oxygen to bodily tissues and organs, leading to an
inability to meet their metabolic needs. This condition can manifest in diverse scenar-
ios, for example in high-altitude environments such as mountain climbing or aircraft
flights. Common symptoms of hypoxia include breathing difficulties, confusion, ele-
vated heart rate, and impaired cognitive and physical functions. If left unaddressed,
hypoxia can lead to tissue damage, organ failure, and, in severe cases, even death.
Traditionally, hypoxia detection relies on post facto measures, with methods imply-
ing peripheral capillary oxygen saturation (SpO2) providing valuable but delayed
insights. Models providing real-time levels of hypoxia, or even early detection and
intervention, would thus be relevant to prevent such a state. They could in fact pro-
vide timely detection to trigger automatic ventilation or to alert healthcare personnel
promptly via adaptive automation. The goal of this study was to produce a real-time
hypoxia detection model using machine-learning techniques in the context of ICU.
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INTRODUCTION

Hypoxia is a condition in which tissues of the body do not receive suffi-
cient oxygen (O2) supply to meet their metabolic demands (Rupp et al.,
2014). Breathing difficulties, respiration rate (RR) changes, confusion, a
quick heartbeat, and impaired cognitive and physical capacities are all com-
mon symptoms of hypoxia (Bhutta et al., 2022). If hypoxia is not addressed,
it can result in tissue damage, organ failure, and, in severe cases, death
(Rupp et al., 2014).

The imbalance between tissue O2 supply and consumption results in an
insufficient O2 supply to maintain cellular function. Hypoxia is typically
diagnosed with an O2 saturation (SpO2) below a selected threshold (%).
According to literature, the threshold is around 90% (Manninen and Unger,
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2016). There are two major causes of hypoxia at the tissue level, low blood
flow to the tissue, or low oxygen content in the blood (hypoxemia). For our
interest, we focus on hypoxia as a low level of oxygen in the tissues. Hypox-
emia and hypoxia are related but, unlike hypoxemia which requires invasive
sensors, hypoxia can be monitored non-invasively (Samuel and Franklin,
2008).

In a study by Sippl et al. (2017), machine learning models were used
to detect postintubation hypoxia during general anaesthesia. Researchers
employed machine learning models utilizing key physiological parameters,
including arterial oxygenation (SpO2), mean arterial pressure, and heart rate
(HR), all recorded during the initial 30 minutes of each anaesthesia session.
The machine learning models identified the AUC of SpO2 at 95%, the overall
decline in SpO2, the minimum SpO2 value, patient’s age, and the Cormack-
Lehane score as the most influential variables to predict a hypoxic state. This
study showcased the development of machine learning models capable of cat-
egorizing oxygen desaturation levels with a degree of accuracy comparable to
that achieved by expert human consensus (Sippl et al., 2017). Their classifi-
cation models was binary (estimates whether or not the person has hypoxia)
and detected hypoxia instantly.

Various methodologies are used in hypoxia prediction models, including
deep learning, electroencephalography EEG, and the utilization of vital signs
measured through invasive sensors.While deep learning models have demon-
strated efficacy in predicting hypoxia, they are often criticized for their lack
of interpretability, posing challenges in implementing them effectively within
intensive care systems (Annapragada et al., 2021). Alternatively, EEG data,
which involves monitoring the electrical activity of the brain, is often used for
hypoxia detection. By analysing EEG signals, abnormalities and patterns can
emerge and provide some valuable insights for predictive modelling (Linnville
et al., 2021). This approach provides insights into the neurological changes
associated with hypoxia and presents a more interpretable framework than
some deep learning models. Hypoxia prediction models can rely on vital sign
measurements obtained through invasive sensors directly connected to the
body. This approach involves monitoring physiological parameters to assess
oxygen levels and accurately predict instances of hypoxia (Lundberg et al.,
2017). Although this method is invasive, it provides a high-fidelity source of
data for robust predictive modelling in critical care scenarios.

Certain approaches utilize vital parameters that are continuously measured
in intensive care allowing for instantaneous binary detection. Other current
approaches to predicting hypoxia, such as deep learning, EEG monitoring,
and invasive vital sign measurements, may not be suitable for continuous,
non-intrusive patient monitoring. Additionally, EEG is often unavailable in
the ICU, and when it is available, it is not for long periods, making it unre-
liable for hypoxia detection. Therefore, this study examines the feasibility of
using non-invasive sensors available in the ICUs, paving the way for more
sustainable hypoxia prediction systems. Additionally, a three-class predictive
model was used to define an intermediate hypoxia state and to account for
hypoxia uncertainty, representing a low level of hypoxia, which also allowed
for a more granular, prospective evaluation of hypoxic state. This study
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incorporates multiple temporal lags, enhancing capabilities for prospective
hypoxia prediction. Finally, to evaluate model performance in a real-world
scenario, we adopt the ONNX (Open Neural Network Exchange) format
for model extraction, allowing seamless inference evaluation in simulated
environments, ensuring the adaptability and interoperability of the predictive
model across diverse systems.

METHOD

To label the three hypoxic states, we relied on measuring SpO2, which is used
as the gold standard for hypoxia.We established two critical thresholds. First,
we established that a SpO2 level of 93% is the threshold for low hypoxia
levels, because it is on the low end of the National Institutes of Health’s rec-
ommended SpO2 target range for COVID-19 patients (Shenoy et al., 2020).
Furthermore, the SpO2 level of 93% falls between the hypoxemia treatment
threshold (94%) recommended by the World Health Organization (World
Health Organization, 2023) and the clinical emergency threshold (90%;
Manninen and Unger, 2016). Second, we chose an 88% SpO2 level as the
threshold for severe hypoxia level, 5% below the first chosen threshold.
Considering these threshold limits, we included the clinical emergency thresh-
old (90%; Manninen and Unger, 2016). Table 1 summarizes the main class
developed according to these thresholds.

Table 1. Classes threshold for the hypoxic state detection
model.

Class Threshold

No Hypoxia SpO2 > 93%
Low level of Hypoxia 88% ≤ SpO2 ≤ 93%
High level of Hypoxia SpO2 < 88%

eICU Database

We worked with the open access eICU database (Pollard et al., 2018) to col-
lect vital data, continuous signals from patients in intensive care recording
cases of hypoxia. The eICU database includes data from 335 units in 208
intensive care units (ICU) across the United States, covering patients who
were severely ill and had their vital signs recorded every five minutes. A
stratified sample of patient index stays by hospital was created using the
percentage of index stays in each hospital from the entire private data reposi-
tory. Only a small percentage of patients had stays in low-acuity or step-down
units; these stays were terminated. Over 139,000 unique patients were admit-
ted during 2014 and 2015, and the database includes over 200,000 patient
unit encounters.

To comply with the US Health Insurance Portability and Accountability
Act’s (HIPAA) safe harbor requirement, all tables were deidentified. One
of these clauses states that all protected health information will be deleted.
Additionally, hospital and unit identifiers have been deleted to safeguard
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contributing organizations’ privacy. In the eICU database, there are 1,263
patients who can experience a loss of oxygen in tissues.

Data Extraction

Vital signs, lab results, medications, care plan details, admission diagnosis,
patient history, time-stamped diagnoses from an organized problem list, and
similarly selected treatments are included in the dataset. Patients’ data is gath-
ered into a shared warehouse only in cases where specific “interfaces” are
accessible. Every interface is designed to transform and load a specific type
of data; for example, vital sign interfaces include vital signs, laboratory inter-
faces measure blood samples, and so on. Even if those measurements were
made in the real context, different care units may have different interfaces in
place, and that the lack of an interface will result in no data being available
for a given patient. The data is provided as a relational database, comprising
multiple tables joined by keys. Table 2 displays the vital signs available.

Table 2. Percentage of data availability for health parameters in the eICU.

Data Type Column Name % of Data Available

Heart rate heartrate 99.6%
Peripheral oxygen saturation sao2 88.2%
Respiration rate respiration respiration 84.5%
ST level st2 40.2%
ST level st1 37.5%
ST level st3 36.5%
Invasive mean blood pressure systemicmean 14.0%
Invasive systolic blood pressure systemicsystolic 13.9%
Invasive diastolic blood pressure sytemicdiastolic 13.9%
Central venous pressure cvp 12.4%
Temperature temperature 6.9%
Mean pulmonary artery pressure pamean 2.0%
Diastolic pulmonary artery pressure padiastolic 2.0%
Systolic pulmonary artery pressure pasystolic 2.0%
End tidal carbon dioxide concentration etco2 4.5%
Intracranial pressure icp 0.8%

Data Preprocessing and Feature Extraction

In this phase of our research, we present a comprehensive approach to data
preprocessing and feature extraction. These steps are crucial in ensuring the
reliability and effectiveness of subsequent analyses. The process includes sev-
eral discerning stages, each designed to strengthen the dataset’s robustness
and capture key temporal dynamics associated with hypoxia events.

Our methodology starts by selecting time series datasets that have at least
60 non-null data points. This criterion is necessary to ensure the robustness
and adequacy of the data for subsequent analysis. To handle missing data,
we applied an interpolation method (Uryumtsev et al., 2020; van Rossum
et al., 2023). This method helps to maintain the temporal integrity of the
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dataset, ensuring a continuous and smooth representation of the time series.
Our preprocessing strategy includes applying the hypoxia highlights transfor-
mation to emphasize oxygen saturation fluctuations that may be indicative
of potential hypoxic events, contributing to the accuracy of the subsequent
detection model. To further highlight the hypoxia phenomena, we can change
the emphasis of the decreases in oxygen saturation levels using the following
mathematical transformation (Annapragada et al., 2021):

p(SpO2) = 1− exp
(
SpO2 − 100%

10

)
(1)

This transformation highlights oxygen loss events. The value represents
the probability of observing a hypoxia event. Here: a) when the SpO2 level
is close to 100%, probability (p) of a hypoxic event is low; and b) when the
SpO2 level is lower, p increases sharply.

Finally, we used several prior data points (lags) to capture the tempo-
ral dynamics leading up to hypoxia events. These lags provide a historical
context, enabling the model to recognize patterns and trends leading to
hypoxic occurrences (Annapragada et al., 2021). Our approach integrates
data preprocessing techniques and mathematical transformations, providing
the method for a robust and nuanced analysis of time series data in the con-
text of hypoxia detection. Figure 1 depicts the high-level description of the
process used to create a prediction model.

Figure 1: Depiction of the high-level modeling pipeline.

Feature Selection

To select the most relevant vital signals for developing a hypoxia detec-
tion model (i.e. the features of the prediction models), we based our
choices on a statistical test. We assessed normality using the Shapiro-Wilk
test and found that the vital signals did not follow a normal distribution.
Therefore, we employed the Mann-Whitney U-test for continuous variables
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(Park et al., 2023). Another way to analyse data is to measure the correla-
tions between different vital signs, aiming at predicting hypoxia (Mouradian
et al., 2018). We computed the Spearman correlation coefficients between
vital pairs (Cohen, 2009), which measures the strength and direction of linear
relationship between two variables.

Machine Learning Model

Two models, XGBoost and Random Forest, were used for performance com-
parison The use of Random Forest and XGBoost is due to their prevalence
in hypoxia detection and prediction, and among studies about acute respi-
ratory diseases (Liu et al., 2021; Wang et al., 2017) and respiratory failure
(Liao et al., 2021). The SpO2 parameter undergoes the previously detailed
mathematical transformation. Additionally, a 1-lag temporal component is
incorporated to enhance predictive accuracy accounting. The temporal aspect
accounts for the dynamic nature of physiological parameters and particularly
their evolution over time. The objective of the model is to predict hypoxia
levels 5 minutes in advance, allowing for a timely intervention. The Random
Search technique was used to fine-tune hyperparameters for both the Ran-
dom Forest and XGBoost models. This technique is preferred over grid search
due to its superior performance in hyperparameter optimization (Putatunda
and Rama, 2018).

To ensure the model’s robustness and generalizability, a group five-fold
cross validation approach is employed, using patient groups as distinct folds.
The model’s efficacy is evaluated through a range of metrics, including
balanced accuracy, standard deviation of accuracy, confusion matrix, pre-
cision score, and overall accuracy score, collectively providing a thorough
assessment of its predictive capabilities.

RESULTS

Table 3 summarizes the results of theMann-WhitneyU-test. SpO2 defines the
means of labeling states, that is why is not included in the analysis. As a vital
reference sign for monitoring hypoxia, we selected SpO2 as the primary vital
sign in constructing our prediction model. Our preliminary analysis using the
Mann-Whitney U-test revealed that RR, and HR were the most significant
factors in distinguishing between different hypoxia states.

Table 3. Summary of the results for the Mann-Whitney U-test.

Vital signs No Hypoxia vs
Low Hypoxia

No Hypoxia vs
High Hypoxia

Low Hypoxia vs
High Hypoxia

HR U 9.81×1010 U 2.91×1010 U 3.56×1010

p-value <0.001 p-value <0.001 p-value <0.001
RR U 9.60×1010 U 2.83×1010 U 3.74×109

p-value <0.001 p-value <0.001 p-value <0.001

Our exploration also revealed a correlation between SpO2 and End tidal
(r =0.17, p <0.001), SpO2 and Intracranial pressure (r = 0.37, p <0.001),
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and End tidal and Intracranial pressure (r = 0.38, p <0.001). End-tidal CO2
and intracranial pressure did not adequately represent the different hypoxia
levels in the analyzed dataset and therefore were not considered as features
for this model. We observed an intriguing correlation between HR and RR
(r = 0.27, p <0.001), and their lack of correlation with SpO2 (−0.07 < rs
<0.05, ps <0.001) demonstrated its crucial role in developing a hypoxia detec-
tion model. Therefore, we selected SpO2, HR and RR as features for our
models. Our key features include the selection of two lags for each vital sign
(5- and 10-minutes prior) and a mathematical transformation of SpO2.

Table 4 summarizes the results for the Random Forest and XGBoost
models for the three-class classification of hypoxic events. Similar model-
ing performances were observed across both training and testing for all the
performance values for the Random Forest model be. As shown in Table 3,
mean accuracy on the test set for this model reached 0.937. Precision, bal-
anced accuracy and F1-scores were however inferior, still reaching values
>80%. As for the XGBoost model, it reached similar performance metrics.
Mean accuracy for the test set was also of 0.937, and balanced accuracy was
almost equivalent, with a value of 0.829.

Table 4. Summary of the results for the random forest and XGBoost models.

Model Dataset Mean accuracy Precision Balanced Accuracy F1-Score

Random Forest Training 0.939 0.846 0.806 0.867
Test 0.937 0.847 0.817 0.873

XGBoost Training 0.938 0.828 0.824 0.877
Test 0.937 0.835 0.829 0.880

Figure 2: Confusion matrices for the random forest (left) and XGBoost models (right).

Examining the confusion matrices in percentage terms, both models
demonstrate high precision in correctly identifying instances on the three
classes (see Figure 2). The Random Forest model stands out in precision
for the “No Hypoxia” class with percentages of 96.5% and maintains cor-
rect precision with 79.2% for “High Level of Hypoxia” class. Meanwhile,
XGBoost achieves slightly higher precision for “No Hypoxia” at a 96.8-%



Real-Time Machine Learning for ICU Hypoxia Prediction: A Pilot Study 19

performance but has lower precision for “High Level of Hypoxia” at 74.9%.
Contrary to the XGBoost model which reached lower accuracy for the high
levels of hypoxia, the lowest prediction for the Random Forest model was
found for the middle hypoxic class (i.e. low level of hypoxia).

The three-class hypoxia prediction model based on the Random Forest
algorithm was exported to the ONNX format, which is a widely accepted
standard for model interoperability. The model’s inference performance was
evaluated, with a focus on measuring execution times. The mean execu-
tion time was 130.87 microseconds (SD = 26.54 µs), that is ∼0.13 ms,
demonstrating a reasonably swift prediction process. The distribution of exe-
cution times shows that 25% of the inferences were completed within 111 µs,
50% within 122 µs, and 75% within 148 µs. The minimum execution time
observed was 96 µs, while the maximum recorded time peaked at 3,785 µs.
More than 99.99% of the inferences were executed in less than 1 ms.

DISCUSSION

In the current study, we made use of the eICU database for developing
predictive models for the prospective detection of hypoxic events. Using
a set of physiological features (namely SpO2, HR, and RR), this study
demonstrates the effectiveness of Random Forest and XGBoost models in
detecting hypoxia in a three-class classification task. The models achieved
high accuracy, precision, and balanced accuracy, as well as F1-scores that
validate their proficiency in balancing precision and recall. Examination
of the confusion matrices in percentage terms shows commendable preci-
sion for the “No Hypoxia” class. Accurately predicting the “Low Level of
Hypoxia” and “High Level of Hypoxia” class, however, posed more chal-
lenge due to the complexity of discerning subtle variations in hypoxia levels.
This suggests the existence of a class that creates uncertainty regarding the
hypoxia level. Limitations also emerged with the infrequent class, empha-
sizing the need for a more balanced dataset. By obtaining more frequently
measured data, it could be possible to extract more relevant frequency
features.

Our literature review revealed machine learning models that were designed
to detect post-intubation hypoxia during general anaesthesia. These models
utilized parameters such as SaO2, mean arterial pressure, and HR, achiev-
ing an impressive AUC of 95% (Sippl et al., 2017). This study illustrates
the feasibility of using AI for hypoxia prediction. In a separate study con-
ducted by Snider et al. (2022), classificationmodels were developed to predict
hypoxia episodes using data from wearable dry-EEG sensors. Some stud-
ies also utilized heart rate variability and cerebral oxygenated haemoglobin
(Snider et al., 2022). In contrast to existing literature, our model employs sim-
ple vital signs that are accessible in most contexts using either a smartwatch
or basic sensors.

The exportation of the model to the ONNX format highlights the prac-
ticality and robust execution of the Random Forest model with a mean
execution time of 130.87 µs, indicating potential for tasks with strict latency
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requirements. These findings demonstrate the model’s real-world applica-
bility, highlighting its efficiency and potential for tasks with strict latency
requirements.

Exploring other vital signs or sensors could further enhance model per-
formance by reducing reliance on raw data and incorporating more com-
prehensive data sources. Implementing a machine learning algorithm in an
ICU requires an interpretable approach (Nemati et al.). The SHAP method
can be used to clarify the impact of features on the model’s predictions,
providing a deeper understanding of its reasoning. This technique enhances
the interpretability of machine learning models by transparently revealing
each feature’s contribution to the model’s outputs. Adopting SHAP can help
clinicians understand the reasoning behind developed predictionmodels, pro-
viding deeper insight into the decision-making process. Another database that
is worth exploring for testing and validating the model is theMIMIC III Clin-
ical Database. This model, based on ICU data, identifies vital sign patterns
specific to hypoxia. It has potential applications in other hypoxic contexts,
such as high-altitude climbers or divers. Future studies should test this model
on different datasets to validate its effectiveness. The study’s strength lies
in its use of real-world ICU patient data, which enhances generalizability
compared to artificial laboratory data. Furthermore, automated bedside data
collection reduces the risk of errors compared to manual collection. Although
the current models exhibit strong performance, it is crucial to address their
limitations through balanced data collection and exploration of additional
features to enhance their ability to discern hypoxia levels.

CONCLUSION

This pilot study demonstrates the potential of real-time machine learning,
using XGBoost and Random Forest, in predicting ICU hypoxia using only
the SpO2, HR, and RR features. The model, generating good performance,
aimed to allow for timely intervention by predicting hypoxia levels 5 minutes
in advance. The optimization of the model, rendered interoperable through
the ONNX format, reinforces its utility for ICU patients, underlining the
significance of this innovative approach in critical care.
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