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ABSTRACT

This study explores gaze transition entropy (GTE) as an objective performance mea-
sure in industrial assembly training. GTE can be defined as a  metric of randomness 
in gaze patterns over time, with low entropy indicating predictable and structured pat-
terns and high entropy indicating unpredictable and irregular patterns. Using mobile 
eye-tracking glasses, 28 participants completed a cable assembly task while gaze pat-
terns were analyzed across specific areas of interest (AOIs). Preliminary findings from 
six participants show decreased GTE with increased task familiarity and task experi-
ence. Additionally, preliminary trends suggest a positive relation between GTE and 
self-reported hesitation, indicating its potential as an objective gauge of uncertainty. 
Furthermore, a theoretical variation on gaze transition entropy where the effect of 
consecutive fixations a t t he s ame o bject i s f actored o ut i s e xplored. T his research 
offers insights into the potential of using gaze transition entropy to objectively assess 
hesitation and proficiency i n t raining, p roviding a  p otential a venue f or enhancing 
instructional content within instructional design using objective evidence. Further 
refinement and exploration of gaze transition entropy could significantly impact train-
ing quality assessment across diverse domains and can enable promising applications 
in other fields as well.
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INTRODUCTION

If we were to try getting insight into the ins and outs of how a person is 
solving an assembly task, mere visual observation might not be sufficient. To 
really understand the individual’s progress in the task, we can, for exam-
ple, ask the person—which would impede ongoing task execution—or, a 
more subtle approach, we can observe the person’s eye movements with
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eye-tracking devices. In fact, eye-tracking techniques, either in conjunction
with or independently of other psychophysiological measurements, can not
only offer insights into human cognitive states and processing, but also detect
when things go wrong or when the flow of progress suddenly changes (e.g.,
detecting when human operators get cognitively overloaded, or start hesi-
tating). Albeit an old technique, in recent years, more and more studies have
intensively explored eye-tracking techniques to objectively measure cognitive
load during various tasks and in a wide range of contexts (Marquart et al.,
2015; Tolvanen et al., 2022). Interestingly, in the field of instructional design
(i.e., the design of learning processes and educational content in training),
this opens the door to automatic evaluation of instructional designs. Where
current evaluation methods are cumbersome and rely largely on explicit sub-
jective self-reported assessments by subjects, eye tracking techniques can
serve as objective, swift and automatic assessment methods.

Eye tracking offers various possibilities to investigate cognitive states. First,
there is pupillometry. Awell-established relation exists between pupil dilation
and cognitive load (Gavas et al., 2017; Just et al., 2003; Krejtz et al., 2018;
van der Wel and van Steenbergen, 2018). As a result, one can assess a user’s
cognitive state while performing a task. However, due the larger pupillary
light reflex, pupillometry is typically—and, ideally—used in well-controlled
lab environments (Beatty and Lucero-Wagoner, 2000). Blinking, another eye-
related function, also reflects cognitive states beyond its primary role in
eye maintenance. Attributes like blink rate, variability, and duration convey
information about cognitive states from mind wandering to sustained atten-
tion, fatigue and cognitive load (Maffei and Angrilli, 2018; Perkhofer and
Lehner, 2019; Smilek et al., 2010). However, using blinks to assess cognitive
states in applied contexts is challenging due to their links to various cognitive,
behavioral, and functional aspects. Interestingly, blink rate is shown to have
a positive correlation with cognitive load during assembly work, despite high
visual load (Biondi et al., 2023).

Researchers have also investigated other eye-related measures and their
relationship with cognitive states—number of fixations, average fixation
duration and number of saccades (Perkhofer and Lehner, 2019; Zagermann
et al., 2018). Also, gaze dispersion and patterns can be investigated. For
example, through heat maps or scan path plots. A measure that has gained
increased attention in recent years is gaze entropy, often referred to as gaze
transition entropy (GTE). GTE is a measure of unpredictability (or random-
ness) in a participant’s gaze pattern, where higher values indicate a less
structured, thus more chaotic, gaze pattern. This way, one of the character-
istics of a gaze pattern, usually studied though scan paths, can be quantified.
The idea of quantifying statistical dependencies in gaze patterns was initially
introduced by Ellis and Stark (1986) and later developed further by multiple
researchers (Hwang et al., 2011; Krejtz et al., 2015, 2014; Vandeberg et al.,
2013) and used in a wide range of applications such as academic poster com-
prehension (Hao et al., 2019), visual exploration of faces in autistic children
(Shic et al., 2008), or cognitive load of surgeons during surgery (Di Stasi
et al., 2016). Mathematically, GTE over different areas of interest (AOIs;
i.e., predefined areas in the visual scene) finds its roots in information theory.
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Bymodelling gaze transitions as first-orderMarkov chain processes, the com-
plexity in a gaze pattern (i.e., sequence of AOIs) can be expressed in terms
of (normalized) Shannon’s Entropy and statistically compared (Krejtz et al.,
2015).

It is intuitively clear that GTE can be employed as a marker for concepts
such as experienced difficulty, hesitation, cognitive (over)load and instruc-
tion comprehension in industrial assembly training contexts. However, this
has not yet been investigated. GTE as one of the objective performance mark-
ers other than the evident accuracy and speed can potentially inform future
instructional designs as instructions that elicit, for instance, hesitation or cog-
nitive overload can easily and automatically be detected and optimized. The
current study explores GTE as a potential performance marker in a step-by-
step cable assembly task using mobile eye trackers in a dataset collected for a
broader eye-tracking study. While there might be applications for individual
performance evaluation (e.g., real-time evaluation to steer operator support
systems), this study—as an initial exploration and given the nature of the use
case—focusses on the potential of the marker to use it as a tool to evalu-
ate instruction quality. Additionally, a new variation on GTE compared to
that introduced by Krejtz et al. (2015) is explored, aiming at controlling for
specific eye behavior that is not of interest.

METHOD

Participants

28 participants (7 female,Mage = 23.7 years old) voluntarily took part in this
study. Given the exploratory nature of this work, 6 participants (1 female;
Mage = 25.5 years old) were selected at random for inclusion in the current
initial analysis. Each participant signed informed consent and received movie
theatre vouchers.

Figure 1: Overview of the workspace during the experiment. a) Instruction flip chart;
b) storage boxes; c) cable assembly board.

Equipment and Assembly Task

The study employed a cable assembly training conducted on a pow-
ered assembly board (Figure 1), replicating real cable assembly workplace
practices, which was mounted on a height adjustable worktable. The cable
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board was surrounded by storage boxes containing tools or materials. To the
right of the assembly table (not shown in Figure 1), a rack stored some neces-
sary cable parts. Above the cable assembly board, a small flip chart displayed
paper instructions, with each card presenting instructions on the front and a
QR code on the back. A scanner behind the flip chart automatically times-
tamped QR codes when participants flipped cards to advance to the next
instruction.

The task comprised 19 major steps, further divided into 42 substeps. Each
step’s instruction card included a textual description and two pictures—one
illustrating the current situation and the other depicting the end state of that
step.

Tobii Glasses 2 were used to record eye tracking data. They are mobile
eye trackers that look similar to regular glasses, capturing data at 100 Hz.
Simultaneously, the mobile eye tracker recorded a first-person video for
gaze object/AOI identification during video coding (i.e., “Fixation X was in
AOI Y”). A total of 34 AOIs were defined.

Procedure

Participants first signed informed consent and were then introduced to the
task and the cable board. Following the introduction, they wore mobile eye-
tracking glasses and underwent the standard calibration procedure for Tobii
Glasses 2. The experiment proceeded without time constraints, allowing
participants to navigate without immediate corrections for mistakes. Exper-
imenter intervention occurred only when errors led to dead ends, and those
specific steps were subsequently excluded from the data. The task was per-
formed twice. Due to the relatively simple nature of the training characterized
by steep learning curves, participants could be considered to have already
attained a certain expert level during the second run (R2) of the task because
of what they learned in the first run (R1). After each run, participants evalu-
ated their hesitation levels for each step on a scale from 0 to 2: indicating no
hesitation, a slight amount of hesitation, or a significant amount of hesitation,
respectively.

Gaze Transition Entropy

Gaze entropy scores were calculated using the procedure proposed by
Krejtz et al. (2015). In short, we started by creating a transition matrix using
the consecutive fixation during the performance of each step. This transition
matrix includes—based on the observations in a specified time interval—cells
of which the value in row i and column j represents the empirical probability
that the next fixation would be to the in the jth AOI if the current one is in
the ith AOI. In other words, each row and column in the matrix corresponds
to a specific AOI, and the values in the cells indicate the likelihood of tran-
sitioning from one area to another. AOIs are collected in set S = {1, …, s}
which is the state space of the Markov process. A sequence of fixations are
modelled as a Markov chain with constant probabilities pij and stationary
probabilities π i, where i, j ∈ S. Based on the transition matrix a stationary
distribution π can be calculated. The eventual formula used to calculate GTE
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was a modified version of Shannon’s entropy formula:

Ĥt = −
∑
i∈S

πi
∑
j∈S

pijlognspij.

The difference between our formula and the one used by Krejtz et al.
(2015) is the choice for the base of the logarithm. By setting the base of the
logarithm at nS (i.e., the number of AOIs) which is a constant for all calcu-
lations within this study—the number of AOIs in the workspace remained
unchanged throughout the experiment—a more interpretable scale for GTE
is obtained, now spanning from 0 to 1 (from fully predictable to fully random
gaze pattern, respectively).

Another modification to the procedure of Krejtz et al. (2015) that is
explored in the current work stems from the theoretical implications of
retaining consecutive fixations in the same AOI in the transition matrix. In
the original approach, extended focus on a specific AOI (e.g., while read-
ing instructions presented in one AOI) leads to decreased GTE, indicating a
more predictable gaze pattern. This occurs as prolonged attention increases
the likelihood of consecutive AOIs being the same, reducing the variability
and randomness in eye movements. This would imply that, for instance, when
a participant is reading something in a specific AOI for a longer period (e.g.,
reading instructions), this would result in lower GTE. Therefore, we explore
a variant to GTE factoring out the influence of such consecutive fixations.
We will refer to this variation of GTE as modified gaze transition entropy
(mGTE). Mathematically, this can be obtained by zeroing out the diagonal
of the transition matrix with the absolute values of the observed transitions
before the values are converted to the constant probabilities pij. The other
steps in the procedure were identical to Krejtz et al.’s (2015).

Data Analysis

GTE and mGTE were calculated at two levels. First, (m)GTE was separately
calculated for the entire duration of each run completed by every partici-
pant. Second, gaze entropy was calculated for each step separately. Data
during steps that were irrelevant to the assembly, very short steps (< 10 fixa-
tions), and steps during which the experimenter had to intervene, or help were
deleted from the latter calculations, but were retained for the assembly-level
entropy calculations.

Given the small sample size (N = 6), performing classical parametric sta-
tistical analyses is unsensible. Therefore, non-parametric tests have been
performed as they do not pose assumptions on, for instance, the distribution
of the data and because they can handle small datasets. However, we under-
line the exploratory nature of the current work. The non-parametric method
that fits the current dataset is the (one-sided) Wilcoxon signed-ranks test for
2 dependent samples. In case of significant effects, effect size r is reported.
However, given the small sample size not all tests could be performed. There-
fore, additional descriptive analyses are reported to provide preliminary ideas
on trends and potential.
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RESULTS

GTE calculated across full assemblies was significantly larger for the first run
(R1) (Mdn= 0.378) compared to during the second run (R1) (Mdn= 0.327),
Z=−2.42, p= 0.016, r= 0.90. This is in line with the expectations given the
increased experience and proficiency of the participants the second time they
performed the task. Similarly, mGTE across full assemblies was also larger
for the first run (Mdn= 0.558) compared to the second time participants per-
formed the assembly task (Mdn = 0.531), Z = −2.15, p = 0.031, r = 0.81.
To gain better understanding of the new measure mGTE, the descriptive
data analysis results revealed that GTE calculated across full assemblies
ranges between 0.285 and 0.489 while mGTE showed less variability with a
minimum of 0.520 and a maximum of 0.590 (Figure 2).

When exploring GTE calculated on separate steps across both runs, we
observed a broader distribution for mGTE (SD = 0.121) than for GTE
(SD = 0.080). Zooming in, mGTE was (close to) zero (< 0.001) for 24 steps.
These steps also had a low value for GTE (0.067–0.197). When investigating
the corresponding transition matrices, we found that these steps were char-
acterized by a rather directional gaze pattern with minimal to none revisits
to previous AOIs. Such gaze patterns exhibited a high level of predictability,
especially when we excluded consecutive gazes to the same AOI. For exam-
ple, if a participant’s gaze pattern was A-A-A-B-C-D, the only uncertainty
stemmed from the transitions when currently fixated on A. By removing
the influence of consecutive fixations within the same AOI, the gaze pattern
transformed into a deterministic sequency (A-B-C-D), resulting in a highly
predictable transition matrix.

Figure 2: (Modified) gaze transition entropy scores calculated on gaze patterns across
entire assembly runs for each individual.

When examining the potential connection between (m)GTE and subjec-
tive ratings of hesitation, participants infrequently reported hesitation during
steps. Among the 6 analyzed participants, 12 instances indicated a lot of
hesitation, and 46 instances noted little hesitation during a step, with the
remaining steps (400) reported as without hesitation. Given the limited
instances with hesitation, the self-reported hesitation scores were categorized
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as present or absent. Despite data imbalance, a slight positive trend emerged,
showing higher mean GTE and mGTE values for steps with reported hesita-
tion compared to those without (Figure 3). Notably, the substantial shift in
absolute values from GTE to mGTE seen in the full assembly analysis was
absent when considering individual steps.

Figure 3: (Modified) gaze entropy scores calculated on step-level. Black squares
indicate mean values.

Upon closer examination, we performed step-level analyses. However,
given the sample size, in-depth analyses per step were impossible with the
available analysis methods. Therefore, only tests on aggregated data across
steps were conducted. To do so, we divided the dataset into two dis-
tinct dataset: one containing data of steps where participants (individually)
reported hesitation during the first run and did not do so during the second
run (hesitation – no hesitation; H-NH dataset) and a dataset only contain-
ing data of times where participants reported no hesitation during both the
first and the second run (no hesitation – no hesitation; NH-NH dataset). If
the hypotheses were correct, we would be able to see a stronger decrease in
(m)GTE in the first compared to the second dataset. Results showed a sig-
nificant decrease in step-level GTE from the first run (Mdn = 0.262) to the
second run (Mdn = 0.182) in the H-NH dataset, Z = −2.15, p = 0.031,
r = 0.91. The same applied for the NH-NH dataset, where again, the second
run showed lower step-level GTE during the first (Mdn = 0.246) compared
to during the second run (Mdn = 0.225), Z = −2.42, p = 0.016, r = 0.90.
For mGTE however, this difference was only observed in the NH-NH dataset
(MdnR1 = 0.236 and MdnR2 = 0.207), Z = −2.15, p = 0.031, r = 0.81,
and not in the H-NH dataset (p = 0.219). We observe that the difference in
effect size for the effects found in the H-NH and NH-NH datasets for GTE
is negligible.

To exemplify what (m)GTE quantifies, figures were generated to illustrate
the gaze path of an individual during a specific step (step 9.01) in two runs
(Figure 4). In this step, participants were required to locate the correct con-
nector piece, place it in a mold at a specific location on the board, and ensure
the correct orientation. In the first run, the participant’s gaze path was more
chaotic, with higher saccade frequency between AOIs. GTE andmGTE values
for the first run were 0.350 and 0.306, respectively. The second run showed
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a more organized gaze pattern, with GTE and mGTE values of 0.264 and
0.175.

Figure 4: Gaze paths of one participant during step 9.01 during the first (R1) and the
second run (R2). Fixations are presented as colored circles and saccades as lines. The
numbers indicate the order of the fixations.

DISCUSSION

This study explored whether gaze transition entropy (GTE) can be used as an
objective performancemarker in industrial assembly contexts. Using data of a
larger eye tracking study, the measure GTE and a variation on GTE (mGTE;
i.e., GTE controlling for consecutive fixations within the same AOIs) were
investigated on their potential usefulness as a performance marker during
assembly work. Specifically, as a first step in this endeavor, GTEwas explored
as a marker potentially highlighting experienced difficulty during assembly
trainings (e.g., cognitive overload, hesitation, etc.), or performance in short.

Preliminary results show a strong negative relation between (m)GTE and
experience with the task, suggesting that when participants are better pre-
pared and experienced, their (eye) behavior is more structured and decisive.
Importantly, this was mainly observed when GTE and mGTEwere calculated
across the full assembly task. This finding suggests a potential usefulness to
evaluate concepts such as learning, efficiency, or experience when (m)GTE is
used on task level.

When investigating (m)GTE values for each separate step, the data sug-
gested a slight positive relation with self-reported hesitation. Additionally,
similar to the task-level analysis, a significant relation between (m)GTE and
experience with the task (first vs. second run) was observed.

The results underline the potential of GTE as an evaluation marker in
assembly-like contexts. When used at group level, it can especially be use-
ful to evaluate instructional designs—if everyone has difficulties with step X,
those instructions should be improved.

Although on the theoretical level GTE and mGTE are rather non-
interchangeable, the data showed only minimal differences when it is used
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in the current context. At the descriptive level, we observed more variability
and lower absolute values for GTE compared to mGTE. However, both mea-
sures did not give significantly different results. This may be attributed by
the task’s nature and the instructions. In case of more complicated, textual
instructions that would require extensive reading, we would expect larger dif-
ferences between GTE and mGTE because of the more frequent consecutive
fixations in the same AOI.

This study underlines the promising opportunities of applying techniques
from information theory to evaluate instructional design. Exploring further,
future research should consider investigating the concept of mutual informa-
tion (Hao et al., 2019) between the AOI housing the instructions and another
AOI to strengthen GTE results. On an abstract level, mutual information rep-
resents that knowledge obtainable in AOI X decreases the uncertainty when
at AOI Y. Based on this, it could be hypothesized that well-designed and
clear instructions would have increased mutual information with other AOIs
compared to poorly designed and confusing instructions.

Although for now, the main application of GTE for instructional design
evaluation–as we learned from this study—encompasses group-level analyses,
another aspect that is worth exploring is the potential real-time possibility of
GTE. A (quasi-)real-time variant of gaze transition entropy would make it
possible to monitor workers or trainees online. This would allow for quicker
iterations to improve usability, user experience and learning. Importantly,
real-time GTE opens possibilities beyond instructional design evaluation,
extending to applications such as adaptive operator support systems (cf.
Dimitropoulos et al., 2021). The most critical challenge for real-time GTE,
however, will be the definition of the time window size. GTE is calculated
on data from a specific time interval. Therefore, GTE can only be quasi-real-
time since it would be calculated on the last updated data slice. The size of
this time-window, however, can greatly influence gaze transition entropy and
should be carefully considered.

A crucial consideration pertains to the nature of the task or training.While
(m)GTE shows to be a promising marker in structured, step-wise instruc-
tional designs where adherence to distinct steps is expected and advisable, its
utility may diminish in tasks granting participants the freedom to choose their
own strategies. In such tasks, it might be beneficial to explore more which
would possibly lead to higher (m)GTE values. Another important note lies in
the interpretation of the absolute values of GTE and mGTE scores. Although
the scores are useful when different gaze paths are compared, they are hard
to interpret when they are presented on their own. Future research should, if
possible, consider working towards guidelines that can be used to interpret
the absolute values in their specific context. Furthermore, investigating the
distinctive features of various industrial tasks and establishing guidelines for
the indicative efficacy of specific eye tracking markers, such as GTE, for dif-
ferent behavior or cognitive states in different task types, would enrich the
field with a tailored toolbox for operator evaluation.

In conclusion, GTE (and its variants) can serve as a valuable marker in
the toolbox of the instructional designer to objectively evaluate instructional
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designs of trainings. However, the results of this study leave open the ques-
tion of the range of constructs or behaviors to which it is linked. For example,
this study showed that GTE could be brought in relation to experience with
the training, but it remains unclear which underlying factors are at play
(e.g., more decisive execution of the task, less cognitive load, etc.). Although
the current results suggest promising potential applications, further research
should consider specific experiments to disentangle the underlying processes
of changes in GTE.
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