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ABSTRACT

Climate change caused by anthropogenic environmental pollution has become one of the most
pressing issues of our modern world. For instance, heat waves have been shown to seriously
impair students’ health and productivity (Lala & Hagishima, 2023). The general problem of cli-
mate change has influenced recent research to focus on redesigning and restructuring the living
environment to improve human health and productivity. Yet, according to Palme and Salvati
(2021), there have been relatively few studies on the relationships between microclimates and
human health and emotions. This is particularly detrimental as the in-depth knowledge obtained
can be used to enhance human health and productivity, as well as influence their attitude towards
the environment (Doell et al., 2023). This paper reports a study conducted by students as an
independent research project under the mentorship of a senior research scientist at the National
Institute of Education, Singapore. It represents a multidisciplinary, citizen science and neuroer-
gonomic approach to investigate the relationships between human neuro-physiological health
and mental well-being. To investigate both physical health as well as stress, low-cost, bespoken
wearables were built, such as a mini weather station and physiological wristband. Electroder-
mal activity (EDA) was also introduced as a non-invasive method to detect stress and emotional
arousal (Rahma et al., 2022) and as a marker of sympathetic network activity (Zangróniz et al.,
2017). EDA features such as mean of tonic component and TVSymp (spectral powers in specific
frequency bands according to Posada-Quintero et al. (2016a; 2016b) and their normalised versions
were focused on as they were found to be highly sensitive to orthostatic, cognitive, and physical
stress (Posada-Quintero et al., 2020). PPG was also introduced as a second source of data for anal-
ysis of stress and emotions, since it is influenced by the cardiac, vascular and autonomic nervous
systems, which are all affected by stress. Machine learning models were trained to investigate
relationships between emotional arousal, stress and the surrounding environment. To elaborate,
climate change might precipitate changes to microclimates to the extent that for those inhabiting
these biomes the changes might be detrimental to physical and mental well-being. Therefore,
investigating EDA data may unveil hidden relationships as to how microclimate is related to our
perception of well-being at a granular level. In this way, the present study builds on prior work
(eg, Lim et al., 2022) that documented changes in microclimate on affective states. It is hoped that
analyses of EDA and PPG data will further strengthen the emerging model describing the inter-
sections between local microclimate, physiological stress and emotion. In the present study, we
apply this paradigm to the use of EDA in the context of students’ scholastic activity. We seek to
understand factors influencing the affective states of learners. Our preliminary findings suggest
implications for the design of living and studying conditions with respect to the interaction of
microclimate and human health and comfort.
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INTRODUCTION

This paper reports research that embraced a multidisciplinary framework,
focusing on the convergence of environmental factors, human physio-
logical health and mental well-being. With an eye toward sustainabil-
ity, affordability, and citizen science, DIY physiological wristbands were
developed through a citizen science approach to gather Photoplethys-
mography (PPG) and Electrodermal Activity (EDA) data. In total, three
categories of data were gathered: environmental data, EDA data, and
PPG data.

Electrodermal activity (EDA) has been defined as a measure of neurally
mediated effects on sweat gland permeability, observed as changes in the
resistance of the skin to a small electrical current, or as differences in
the electrical potential between different parts of the skin (Critchley and
Nagai, 2013). EDA consists of a tonic and phasic component, represented
by skin conductance level (SCL) and skin conductance response (SCR), and
is closely associated with the stress response and emotional response of
humans.

Photoplethysmography (PPG) has emerged as a promising indicator for
stress detection, offering a non-invasive and convenient method for mon-
itoring physiological changes associated with stress. PPG utilises the mea-
surement of blood volume changes in peripheral blood vessels, typically by
illuminating the skin with light and detecting the resultant variations in light
absorption caused by pulsatile blood flow.

The PPG signal is an excellent indicator of physiological information, since
it is influenced by the cardiac, vascular and autonomic nervous systems,
which are all affected by stress (Allen, 2007). A study by Peláez-Coca et al.
(2020) also highlights the potential of PPG signals in detecting stress-related
alterations in cardiovascular dynamics, such as changes in heart rate variabil-
ity and arterial stiffness. These findings underscore the utility of PPG as a tool
for assessing stress levels andmonitoring stress-related physiological changes.
Kim et al. (2018) have also concluded that stress and consequently, variation
in HRV variables, can be observed via parasympathetic activity, which is
characterized by a decrease in the high-frequency band and an increase in the
low-frequency band.

PPG sensors are the most explored due to their advantages in miniaturiza-
tion and non-invasiveness. As stated in the work of Rinella et al. (2022), a
healthy heart possesses the ability to swiftly change its rhythm non-linearly
in response to abrupt physical and psychological demands encountered in an
unpredictable and dynamic environment. They also suggested that oscilla-
tions of heartbeat reflect the regulation of autonomic balance, blood pressure
(BP), gas exchange, gut, heart, and vascular tone.

As argued in preceding paragraphs, changes in climate can affect individ-
uals both physiologically and psychologically. Since collecting PPG and EDA
data is non-invasive and sustainable, they are a viable choice for reliable and
accurate assessment of human stress and emotions.
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METHODOLOGY

Collecting Photoplethysmography (PPG) and Electrodermal Activity
(EDA) Data

In this study, DIY physiological wristbands were designed and built from a
citizen science approach. The EDA circuit was designed based on the hard-
ware description as detailed in Zangróniz et al. (2017). The input voltage
is 3.3V from Arduino Nano which is the microcontroller used for the cir-
cuit. The sampling rate of EDA sensor is 10 Hz. For the PPG sensor, a
pre-assembled sensor model was used: xd-58c, with extension wire to be
fixed on the user’s finger. The sampling rate of PPG sensor is 50 Hz. The
device was designed to be worn on the wrist of the user. The device also has a
battery which lasts around ten hours and a bluetooth module allowing data
to be transferred to computers or mobile devices. The electronic components
were housed in a plastic container measuring 6.5 cm by 5 cm by 2.5 cm.
Two ends of the plastic box were connected to two strips of velcro, allowing
the user to fasten the device on their wrist. A unit costs 37 USD and weighs
approximately 45 grams.

Figure 1a and 1b: Assembled EDA wristband.

Collecting Microclimatic Data

A small portable device was built in order to measure the following ambient
environmental conditions: noise level, infrared radiation through light inten-
sity, dust concentration, carbon dioxide concentration, temperature, relative
humidity, air pressure and wind speed. Sampling rate of the unit is 1 Hz.

Investigating How the Environment Affects Physiological, Mental
Health and Productivity

A period of two hours was cut into eight 15-minute windows. Different ran-
domized combinations of microclimatic factors were controlled in each of the
windows. Throughout the experiment, a DIY wristband was worn on the left
wrist, while the participants were presented with challenging mathematical
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tasks to maintain a high level of stress. Few windows will have easier tasks
to serve as baseline and low stress periods. There are also baseline period-
s/breaks before, during and after the experiment. The participants recruited
were junior college students with similar levels of mathematical competency.

EDA data underwent preprocessing in Python, with outlier detection per-
formed using the z-score method to eliminate outlier data. Initially, the
collected EDA data was normalized and subjected to filtering employing a
low-pass filter (1.5 Hz, Butterworth, 32nd order) to eliminate undesired arti-
facts (Posada-Quintero and Chon, 2020). Subsequently, the EDA data was
decomposed into tonic and phasic components utilizing the convex optimiza-
tion (cvxEDA) method developed by Greco et al. (2016). The SCL index
was derived as the average of 2-minute windows of the Tonic component.
According to Wichary et al. (2016), emotional stress typically exhibits char-
acteristics of high arousal and negative valence, indicating its potential as a
reliable stress indicator.

For frequency-domain analysis, the EDA data was down-sampled to 2 Hz
and subsequently subjected to high-pass filtering (0.01 Hz, Butterworth,
8th order) to eliminate any trend. TVSymp was calculated using variable
frequency complex demodulation, representing the mean of time-varying
spectral amplitudes within the 0.08 - 0.24 Hz band (Posada-Quintero et al.,
2019).

Collected PPG data was firstly normalized then median-filtered and then
demodulated signal was obtained using Hilbert transform. The signal is
then filtered using a band-pass filter (0.5Hz to 5Hz, Butterworth, 2nd
order) to remove unwanted artifacts. The P peaks were detected using the
peakdet library. The P–P interval time series was transformed to an evenly
time-sampled signal by cubic spline interpolation of 4Hz.

Following Posada-Quintero et al., a blackman window (length of 256
points) was applied to each segment, and the fast Fourier transform was
calculated for each windowed segment (Posada-Quintero and Bolkhovsky,
2019). From there, the features of low frequencies of HRV (HRV_LF,
0.045 to 0.15 Hz), high frequencies of HRV (HRV_HF, 0.15 to 0.4 Hz),
and the features are normalized to the total power of HRV (HRV_LFnu,
HRV_HFnu).

Low frequency features of HRV (HRV_LF and HRV_LFnu) are indices
of sympathetic control, high frequency features of HRV (HRV_HF and
HRV_HFun) are indices of parasympathetic control.

HRV features (as 1Hz signals) are then synced with environmental data
and EDA features (as 2Hz signals). Spearman correlation, appropriate for
non-normally distributed data, is used to assess monotonic associations
between environmental factors and EDA features.

Random forest regression models are then trained on PPG, EDA features
and environmental data with the former as input and the latter as output
with a train-test split ratio of 7:3 to find the non-linear connections between
the environmental factors and EDA and PPG features. This is chosen because
model ensembling proves to add to the accuracy of predictions. The results
of the random forest regression models were interpreted using Shapley val-
ues and Shapley summary plots to find more complex relationships between
input and output.
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RESULTS

Over 300,000 environmental data points and 200,000 EDA data points
1,000,000 PPG data points were collected from 5 participants (4 males and
1 female).

Preliminary Statistical Analysis

From the Spearman Correlation Coefficient test, most correlated environ-
mental factors for EDA features and emotions are temperature, air pressure
and carbon dioxide concentration. Table 1 shows these factors’ correlation
with EDA features.

Table 1. Absolute values of spearman correlation coefficient on some environmental
data, EDA and PPG features data.

hrv_lf hrv_hf hrv_lfnu hrv_hfnu TVSymp SCL

Temperature −0.06789 −0.08197 0.03628 −0.03628 −0.10203 −0.3576
Pressure −0.13154 −0.12157 −0.09775 0.09775 −0.01884 −0.11639
CO2 −0.27486 −0.23149 −0.10913 0.10913 −0.13116 −0.46252

Results of Random Forest Regressor on Carbon Dioxide
Concentration

From Figure 2, in terms of PPG features, Shapley Summary Plot suggests that
lower carbon dioxide concentration is related to high values of hrv_lf, indi-
cating higher stress. For the variable ‘hrv_hf’, lower value of carbon dioxide
concentration is related to low values of hrv_hf. For the variables ‘hrv_hfnu’
and ‘hrv_lfnu’, the relationship between Carbon dioxide concentration and
them are not clearly observed. In terms of EDA features, lower carbon dioxide
concentration is related to high values of tonic_mean (SCL) and vice versa.
For the variable ‘TVSymp’, lower carbon dioxide concentration is related to
low values of TVSymp.

Figure 2: R2 score of 0.985 and shapley summary plot using PPG and EDA features as
input to predict carbon dioxide concentration.
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Results of Random Forest Regressor on Temperature

From Figure 3, in terms of PPG features, Shapley Summary Plot suggests that
higher temperature is related to low values of hrv_lf, indicating lower stress.
For the variable ‘hrv_hf’, higher temperature is also related to low values of
hrv_hf. For the variable ‘hrv_lfnu’, lower temperature is related to low values
of hrv_hfnu. Finally, for the variable ‘hrv_hfnu’, lower temperature is related
to high values of hrv_hfnu. In terms of EDA features, higher temperature is
related to low values of tonic_mean (SCL) and vice versa. For the variable
‘TVSymp’, lower temperature is related to low values of TVSymp.

Figure 3: R2 score of 0.988 and shapley summary plot using PPG and EDA features as
input to predict temperature.

Results of Random Forest Regressor on Air Pressure

From Figure 4, in terms of PPG features, Shapley Summary Plot suggests that
higher pressure is related to low values of hrv_lf, indicating lower stress. For
the variable ‘hrv_hf’, higher pressure is related to low values of hrv_hf. For
the variables ‘hrv_hfnu’ and ‘hrv_lfnu’, both lower and higher pressures are
related to high values of hrv_hfnu and hrv_lfnu. In terms of EDA features,
higher pressure is related to low values of tonic_mean (SCL) and vice versa.
For the variable ‘TVSymp’, lower temperature is related to low values of
TVSymp.

Figure 4: R2 score of 0.992 and shapley summary plot using PPG and EDA features as
input to predict pressure.
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DEVELOPING HUMAN SYSTEMS INTEGRATION TOOLS TO
SUPPORT SYSTEMS DESIGN

HSI experts contribute by ensuring that human capabilities and limitations
are considered. It has become clear that treating the system as separate from
the users results in poor performance and potential failure in the operational
setting. Continued growth in technology has not delivered desired results.
Systems engineers and others are beginning to understand the role humans
play in technology systems. The core challenge is to balance successful hard-
ware and software solutions with human friendly implementations. To define
the requirements of humans as a fundamental system component, it is essen-
tial to understand the inherent capacity of user populations and their typical
operational environment (Booher, 2003). A description of a population’s
capacity incorporates more than the basic anthropometrics or the cognitive
capability of the average member of the user population (Chapanis, 1996).

CONCLUSION

With adequate understanding of how microclimate can affect students’ stress
and in quasi-formal academic contexts, it can be hoped that better solutions
can be developed to maximise the comfort of studying for students. This can
be in the form of redesigning studying infrastructure, or even teaching peda-
gogy. This study hopes to set an example for future research to expand and
explore using a more robust, comprehensive approach (e.g.: including more
environmental factors, or a multi-modal approach using ECG and EEG).
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