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ABSTRACT

Accurate recognition of mental workload is significant for optimizing the human-
machine interaction and avoiding the regrade of task performance levels due to
overloading or underloading of mental workload. In past studies, the use of Elec-
troencephalogram (EEG) signals has shown high performance in the recognition of
operators’ mental workload levels, however, most of the studies were conducted using
a single visual modality task or dual visual modality tasks. But in real-world opera-
tional tasks, auditory-visual modalities tasks are commonly involved, and there have
been relatively few researches on the EEG recognition of mental workload levels in
auditory-visual modalities tasks. Therefore, in this research, visual single modality
task scenario and audio-visual dual-modality task scenario were set up based on sim-
ulated flight experiments. For each task scenario, two levels of mental workload were
induced by the differences in task complexity. Twenty subjects were recruited and their
NASA-TLX scales and EEG signals were collected during the experiment. Two types
of feature extraction methods were used, including Power Spectral Density (PSD) and
Common Spatial Pattern (CSP), to recognize the mental workload levels. The research
results indicated that the information processing modality did not have a significant
influence on the performance of recognition for mental workload based on EEG feature
extraction.
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INTRODUCTION

Currently, with the continuous introduction of intelligent and informa-
tization technologies into the aircraft cockpit human-machine interaction
process, the pilot’s Information Processing load has risen dramatically, and
the information processing modality has been enriched. It is likely to create
problems such as high pilot mental workload, insufficient attention resources,
and decreased situational awareness, and may eventually increase the poten-
tial risk of human errors by pilots, resulting in operational effectiveness
that does not satisfy the design requirements. Accurate recognition of men-
tal workload is significant for optimizing the human-machine interaction
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and avoiding the regrade of task performance levels due to overloading or
underloading of mental workload.

Typical methods for measuring and evaluating mental workload include
the subjective evaluation methods, the primary and secondary task per-
formance evaluation methods, and the physiological evaluation methods
(Wickens, 2008). Among the above methods, the subjective evaluation
method and performance evaluation method are constrained by the fact that
most of their evaluation mechanisms are post hoc measurements and cannot
meet the requirements of real-time measurement and evaluation. Compared
with the above two types of measurement methods, physiological evalua-
tion methods are characterized by objectivity, real-time measurement, and
less interference with the subjects, which has been applied more and more
in the recent studies. Among the physiological signals, such as electroen-
cephalogram (EEG), ocular electrodynamics, cardiac electrodynamics, and
respiratory signals, EEG has been widely used in the study of mental work-
load recognition because of its sensitivity to mental workload levels, high
temporal resolution, and excellent applicability.

In past studies, the use of EEG signals has demonstrated good perfor-
mance in recognizing the mental workload of operators, however, the tasks
selected are generally single modality tasks (Dai, 2017), whereas pilots
need to deal with the multi-modality information processing tasks, includ-
ing the processing of visual and auditory information, in real operations.
In this study, two types of experimental scenarios were set up to address
the above problem, including visual single modality tasks and audio-visual
dual-modality tasks, and high and low mental workload levels were induced
for the two types of tasks, respectively. Based on the EEG signal data and
NASA-TLX rating scale score, we conducted a research on the recognition
of pilot’s mental workload, focusing on the performance of mental work-
load recognition for multi-modality tasks with different feature extraction
methods.

METHODS

Experiments

In this study, 20 subjects completed two types of task scenarios whichwere set
up based on simulated flight experiments (see Figure 1). In Task scenario 1,
subjects only need to perform a simulated flight task based on single visual
modality. In Task scenario 2, subjects need to process an alarm task based
on auditory modality apart from the simulated flight task based on single
visual modality. For each task scenario, two levels of mental workload were
induced by the differences in task complexity. In low mental workload tasks,
subjects were only required to complete a basic Airfield traffic pattern task,
while in high mental workload tasks subjects were required to complete a
complex ground-attack task.
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Figure 1: Task scenarios based on simulated flight experiments.

For the Airfield traffic pattern task, the subject only needs to depart
from the initial position and return to the initial position after 4 turning
points. For the ground-attack task, the subject needs to complete a series
of complex operations such as holding the flight attitude, setting the avionic
mode, setting the missile delivery mode, setting the radar mode, setting the
bomb launching mode, searching for the target, and dropping the bomb.
The auditory information processing task requires the subject to recognize
and respond to audio alarms. The detailed experimental paradigm design
is shown in Table 1. In order to eliminate practice and fatigue effects, the
experimental sequence was based on a Latin-square design.

Table 1. Detailed experimental paradigm design.

Task scenario 1 Task scenario 2

Low mental
workload tasks

Airfield traffic pattern task
Sound alarm task:None

Airfield traffic pattern task
Sound alarm task: 3 times/minute

High mental
workload tasks

Ground-attack task
Sound alarm task:None

Ground-attack task
Sound alarm task: 3 times/minute

Data Acquisition

The data collected in this experiment included EEG signals and NASA-TLX
rating scale score. The 30-channel EEG signals were acquired using the Neu-
roscanNeuamps EEG acquisition system (Compumedics Limited; Victoria,
Australia), and all electrodes were made of Ag/Agcl, with 0–200 Hz record-
ing bandwidth and 1000 Hz sampling rate. The left mastoid A1 was used as
the online reference electrode. Vertical and horizontal eye electrooculograms
were recorded simultaneously.

Data Preprocessing

Band-pass filtering (1-30 Hz) was first performed on the raw data, and
subsequently independent components analysis (ICA) was used to remove
blink and eye movement artifacts during the experiment. After completing
the independent components analysis, the correlation levels of the decom-
posed components with the horizontal and vertical ocular electrodes were
calculated, and the independent components that were highly correlated
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with the ocular electrodes were identified and removed as ocular artifacts
(see Figure 2), and then the remaining independent components were recon-
structed. The EEGLab toolbox was invoked in the data preprocessing phase
of this research.

Figure 2: Independent components highly correlated with ocular electrodes (red).

Feature Extraction

Based on the EEG data, the frequency domain feature extraction method
and the spatial filtering feature extraction method were selected. For the fre-
quency domain feature extraction method, the Power Spectral Density (PSD)
method is selected to construct the feature space; while for the spatial filter
extraction method, the Common Spatial Pattern (CSP) method is selected to
construct the feature space.

Power Spectral Density
The EEG data was divided into segments containing 1024 sampling points
and the neighbouring segment step length was 512 sampling points. The
power spectral density of each segment was calculated using Equation (1).

Pk =
FFT

[
X(n)

]
× FFT∗

[
X(n)

]
n× fs

, k = 0, 1, . . . ,N − 1 (1)

Where Pk is the power spectral density of each EEG data segment, FFT
[
X(n)

]
is the Fast Fourier Transform process of a random signal sequence X(n) of
length n, FFT∗

[
X(n)

]
is the covariance expression of FFT

[
X(n)

]
, n is the num-

ber of sampling points in a single segment, which is 1024 here, and fs is the
sampling rate, which is 1000 Hz here.

The energy features of EEG in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz)
and beta (13-30Hz) rhythms were calculated on the basis of Equation (2)
to (5).

Edelta =
∑4

k = 1
Pk (2)

Etheta =
∑8

k = 4
Pk (3)

Ealpha =
∑12

k = 8
Pk (4)
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Ebeta =
∑30

k = 13
Pk (5)

Where Pk is to represent the power spectral density in discrete frequency
bands, and the energy features of the EEG signals in the four rhythms ofEdelta,
Etheta, Ealpha, Ebeta are acquired by summation. Since the channel dimension
of the EEG signals acquired in this case was 30, and the energy features under
4 rhythmic bands were also extracted corresponding to each channel, the
dimension of the feature vector obtained by the application of the power
spectral density feature extraction method was 120.

Common Spatial Pattern
The original common spatial pattern algorithm is a type of extraction
method for the spatial filtering features in the binary classification condition,
which can obtain a specific spatial distribution composition from the high-
dimensional EEG signals acquired by multiple channels. The basic concept
of the common spatial pattern algorithm is to obtain a set of optimal spatial
filters for projection by using diagonalization of matrices, which could max-
imize the difference between the two classes of signals after being processed
by the optimal spatial filters, and then acquire the feature space with a large
differentiation.

The input of the initial EEG signals used in this research consisted of data
from the C3, Cz, C4, Fz, and Pz electrode points, for the reason that the data
acquired from the above electrodes have demonstrated sensitivity to changes
in mental workload levels in prior researches. In addition, 1024 sampling
points were selected for single-segment, and the data step length of each seg-
ment was 512 sampling points. The final the dimension of the feature vector
extracted by the common spatial pattern algorithm was 4.

Mental Workload Recognition

Support Vector Machine (SVM) was firstly proposed as a linear model
for binary classification, subsequently, after a series of development, it is
currently widely used in classification in complex cases of nonlinear classifi-
cation problems. In practical classification cases, the data are often linear and
indivisible, and the SVMmodel shows good performance for these cases. The
model classification performance and specific generalization ability of SVM
depend directly on the kernel function as well as the induction of slack vari-
ables. The slack variable represents the distance at which the discrete points
are separated, and in order to resolve the misclassification problem of such
discrete points, a penalty factor is introduced to regulate it, and the larger
the value of the penalty factor is, the higher the importance of the discrete
points for the classification process of the model is. In addition, for nonlinear
sample data, the support vector machine could introduce a kernel function to
transform the input features into a higher dimensional feature space to realize
the linear separability of the sample data. Among many kernel functions, the
Radial Basis Function (RBF) has excellent classification performance, so the
RBF method is selected to construct the model in this paper. The combination
of grid optimization and k-fold validation is applied to optimize the penalty
factor C and the RBF parameter gamma.
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In this paper, the GridSearchCV Function of the scikit-learn toolbox was
invoked to implement grid optimization and 4-fold cross-validation. Specifi-
cally, the range of values of the penalty factor C is [0.001, 0.01, 0.1, 1, 100]
and the range of values of the RBF parameter gamma is [0.1, 1, 10, 100,
1000]. Because of individual difference in EEG signals between subjects, this
research was based on building a separate classifier model for each subject.

RESULTS

NASA-TLX Scale Score Results

Descriptive statistics for the visual single modality task scenario under the low
and high mental workload levels were 45.1±13.6 and 55.4±12.4, and for
the audio-visual dual modality task scenario under the low and high mental
workload levels were 49.1±13.0 and 61.2±14.2. The results of the T-test
indicated that in the visual single modality task scenario, NASA-TLX scale
scores of high mental workload tasks were significantly higher than scores
of low mental workload tasks (t=-3.559, p=0.002), and similarly, the audio
visual dual-modality task scenario showed this trend (t=-3.718, p=0.001).
This result suggested that the experimental design successfully induced two
levels of mental workload.

Mental Workload Recognition Results

Based on the PSD features, the mental workload recognition accuracy results
for the visual single modality task were 0.8914±0.0698; for the audio-visual
dual-modality task, the mental workload recognition accuracy results were
0.8752±0.0646 (see Figure 3). T-test results showed that for the two types
of task scenarios, there was no significant difference in the mental workload
recognition accuracy results using the PSD features (p>0.05).

Figure 3: Mental workload recognition accuracy results based on the PSD features.

Based on the CSP features, the mental workload recognition accuracy
results for the visual single modality task were 0.8630±0.0654, and for the
audio-visual dual- modality task were 0.8330±0.0762 (see Figure 4). The
T-test results showed that for the two types of task scenarios, there was no



Influences of Information Processing Modality 177

significant difference in the mental workload recognition accuracy results
using the CSP features (p>0.05).

Figure 4: Mental workload recognition accuracy results based on the CSP features.

The mental workload recognition accuracy results using the PSD and CSP
feature extraction methods in different task scenarios are shown in Table 2.
Specifically, the T-test results showed that there was no significant difference
(p>0.05) between the mental workload recognition performance results using
both PSD and CSP features in the visual single modality task scenario, and the
mental workload recognition performance results using both PSD and CSP
features in the audio-visual dual-modality task scenario exhibited marginal
significance difference (t=2.062, p=0.053).

Table 2. Recognition accuracy results using the PSD and CSP feature extraction
methods.

Task Scenario PSD (M±SD) CSP (M±SD)

visual single modality task scenario 0.8914±0.0698 0.8630±0.0654
audio-visual dual-modality task scenario 0.8752±0.0646 0.8330±0.0762

DISCUSSION

In this study, two types of task scenarios, visual single modality and audio-
visual dual-modality, were set up, and the results of theNASA-TLX subjective
scale scores indicated that both types of task scenarios induced high and low
levels of mental workload through Experimental design of task complexity.

On this basis, for both types of task scenarios, using different feature
extraction methods of this research showed good mental workload recogni-
tion performance in comparison with related studies. The comparison results
of recognition performance were shown in Table 3.
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Table 3. Comparison results of recognition performance with related studies.

Ref. Task Scenario Feature Category Feature Accuracy

This study Single modality/
Dual-modality

Frequency
Domain

PSD 0.89/0.88

Single modality/
Dual-modality

Spatial Domain CSP 0.86/0.83

(Dehais, 2019) Flying task Time Domain event-related
potentials (ERP)

0.5

(Roy, 2016) Sternberg task Spatial Domain Canonical
correlation
analysis (CCA)

0.9

(Dimitrakopoulos,
2017)

N-back Functional
Connectivity
Features

Pearson
correlation
coefficient

0.88

(Kakkos, 2019) Simulated flight Functional
Connectivity
Features

Phase-locking
index

0.82

Meanwhile, there was no significant difference in the recognition perfor-
mance of mental workload using two types of feature extraction methods
in this research for both task scenarios. To analyze the possible reasons,
the audio alarms in this experiment were brief and discrete which did not
significantly affect the recognition performance.

The recognition accuracy using PSD as features showed a slightly greater
trend than CSP, and this trend was more pronounced for the audio-visual
dual-modality task scenario. However, the dimension of PSD features in this
research was much larger than the dimension of CSP features, so the CSP fea-
ture extractionmethod effectively reduces the complexity ofmental workload
recognition computation when the difference in recognition performance is
not too significant.

For different subjects, the mental workload recognition performance also
showed certain difference, to analyze the reason, the mental workload level
itself is affected by the individual differences of the subjects obviously, the
workload sensitivity of different subjects to the external task changes is not
consistent, and the mental workload labels were set uniformly according to
the experimental design, so it caused the individual difference problems in
the recognition performance.

CONCLUSION

Based on PSD and CSP feature extraction methods, the recognition accuracy
of mental workload for both visual single modality task and audio-visual
dual- modality task did not demonstrate a statistically significant difference,
indicating that the information processing modality does not have a sig-
nificant influence on the performance of recognition for mental workload
based on EEG feature extraction. Additionally, using the PSD feature extrac-
tion method demonstrated a slightly better performance on mental workload
recognition compared to CSP.
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