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ABSTRACT

In the realm of human factors, objective assessment of cognitive states is crucial
for the safe completion of tasks. Functional near-infrared spectroscopy (fNIRS) can
be employed to recognize the cognitive activities and evaluate the mental workload
associated with cognitive-executive processes. This study proposes a method for facil-
itating the faster detection of changes in cognitive states based on the correlation
coefficients of adjacent channels, which enables the extraction of local connectivity
(LC) features from fNIRS data. The results indicate that the extracted new features
can reflect changes in the activation patterns of specific brain regions during the early
stages (0∼2.5s) of the task. It is suggested that these features could be used to identify
the brain’s task states.

Keywords: Functional near-infrared spectroscopy (fNIRS), Brain network structure, Brain con-
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INTRODUCTION

With the advancement of aviation technology and the improvement in air-
craft design capabilities, the level of aviation flight safety has significantly
increased. However, human factors remain one of the primary contributors
to aviation accidents and incidents. The statistical data indicates that themain
reasons for airplane accidents are pilot errors and incorrect decision-making
(Dong, 2011). In aviation, integrating neurophysiological signals into cockpit
interfaces and monitoring pilots’ cognitive activities improves system safety
and performance by considering human factors (Li, 2001).

Pilots engage in visual search and rapid responses when interacting with
instruments, exhibiting characteristics of cognitive-executive tasks involving
the integration of cognitive processes (such as perception, attention, etc.)
and executive processes (such as directional movements, button responses)
(Bendall, 2016). These processes are primarily associated with brain activity,
particularly the activity of the frontal lobe (Orellana, 2013).

Methods for detecting brain activity include electroencephalography
(EEG), functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), and others. EEG is currently the most
established neuroimaging technique in research (Anokhin et al., 2004), to
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understand PFC cortex function during such tasks. However, EEG has lim-
itations in spatial resolution and is not suitable for flight tasks in complex
environments due to susceptibility to motion artifacts and the influence of
complex electromagnetic environments within the cockpit. Another brain
imaging technique is fMRI, which has higher spatial resolution compared to
EEG but suffers from high cost, and lower signal-to-noise ratio (Yuan, 2013).
Due to the poor portability of fMRI equipment, it is similarly challenging to
apply within the cockpit.

In this study, we consider the use of functional near-infrared spectroscopy.
Functional near-infrared spectroscopy has several advantages over other
brain imaging methods. Firstly, fNIRS has higher spatial resolution, up to
1 cm. Secondly, fNIRS has higher signal-to-noise ratio (Fishburn et al., 2014),
making it suitable for measuring frontal lobe activity during psychological
tasks and workload. Additionally, due to the portability and lower sensitiv-
ity to motion artifacts of fNIRS, it is more suitable for complex environments
and tasks within the cockpit.

Researches have extracted statistical features from functional near-infrared
spectroscopy to analyze brain performance in cognitive-executive tasks
Sitaram et al. (Sitaram et al., 2007) extracted the average values before
and after experimental responses as features for assessing binary classifica-
tion tasks et al. (Herff, 2014) extracted statistical features related to brain
activity in individual trials, such as skewness and kurtosis, for classify-
ing or quantifying differences in brain activity under different experimental
conditions. These studies confirm that cognitive-executive tasks can induce
hemodynamic responses in the frontal cortex.

However, the chosen time windows in these methods are often greater than
5 seconds, which may overlook potential changes in hemodynamic responses
over time, leading to unnecessary judgment delays. In cockpit scenarios, pilots
face emergencies requiring rapid perception and response. Excessive time
delays hinder precise determination of pilots’ rapid state transitions, reduc-
ing system accuracy and increasing task risks. Therefore, it is necessary to
find more rapid features that reflect brain activity during cognitive-executive
periods.

Previous research has recognized the human brain’s complexity as a
dynamic interactive systemwith functionally connected regions. Some studies
employ multi-channel features, particularly connectivity features, to depict
task-related functions. Racz (2017) utilized a 16-channel fNIRS device on
the frontal region for visual cognitive tests. They employed graph theory
methods for matrix analysis, calculating common global network metrics,
and observed increased functional connectivity parameters during stimulus
periods compared to resting states. Nguyen and Kim (2019) utilized Pearson
correlation coefficients to measure brain functional connectivity, exam-
ining differences between normal individuals and patients with cognitive
impairments across various cognitive tasks.

Accordingly, connectivity features are essential potential features reflect-
ing the brain’s working state Therefore, this study aims to investigate changes
in the brain during the search task using brain interconnectivity and net-
work properties. We designed a search task and computed local connectivity



A Potential Rapid Detection of Cognitive Status in the Brain: An fNIRS Study 201

(LC) from near-infrared spectroscopy (NIRS) data. Additionally, the acti-
vated brain regions and the minimum time window of activation occurrence
were determined based on the curve of activation ratio over time.

MATERIALS AND METHODS

The experiment involved 9 subjects aged 21 to 24, with an average age of 23,
all in good physical health and without neurological disorders. All partici-
pants were right-handed, informed about, and consented to the experiment.
Each of the participants was provided with specific task instructions and a
brief practice session before the experiment. Subsequently, the experiment
was conducted following the same procedure for each participant.

Design of Experiments

Our experimental design was as follows: subjects sat on a chair in a quiet
room, 40 cm from the screen, wearing headphones to isolate external
interference, and the experimental environment should be kept in normal
light.

Figure 1: Experimental design and procedure. The primary objective of the search task
is to select a specified number from a set of random numbers (a). The experimen-
tal interface is depicted in the illustration (b). The positions of the 24-channel fNIRS
optodes at the frontal lobe are shown, with yellow and blue circles representing the
light source and detector, respectively (c).

The Figure 1 illustrates experimental examples for each block’s task. Each
participant underwent four sets of blocks, with each block set featuring the
following experimental design: Initially, before the formal commencement of
the task, participants were required to undergo a two-minute resting state
measurement (T0 = 120s). During the resting state, participants focused
on sequentially displayed numbers from 1 to 25 on the screen. Then, they
transitioned to the search task stage. The program verbally presented a
randomly generated number between 10 and 99 in the participant’s native
language, coinciding with a change in the sequence of numbers displayed on
the screen, regenerating 25 random numbers. Participants were required to
search for and identify the announced number within the randomly generated
set. During the task stage, participants placed both hands on the tabletop,
with the right hand resting on a fixed button. Upon locating the announced
number, participants released the button and selected the identified number
before returning their hand to the button. To minimize visual stimuli changes,
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the screen maintained the task status with unchanged random numbers for
20 seconds. Subsequently, it transitioned to maintaining sequential numbers
from 1 to 25 for 40 seconds, allowing brain activity to return to baseline.
After 40 seconds, the experiment proceeded to the next set (T1 = 20s,
T2 = 40s).

Each participant completed four blocks, with each block containing
9 trials, resulting in a total of 36 random numbers searched.

Data Acquisition

Throughout the entire experiment, fNIRS measurements were conducted
on the participants, with channel placements in the frontal lobe region, as
illustrated in Figure 1(c). Artinis’ Brite24 optical near-infrared system was
employed for the measurements, comprising 8 emitters and 7 detectors. The
measurement array utilized a 2×24 configuration, forming 48 measurement
channels, with an interoptode distance of 1 cm. The sampling rate for all
channels was set at 50 Hz. Throughout the experiment, the measurement
system is placed directly on the skin and remains in a fixed position.

Data Processing

Out of a total of 324 search trials, the first set of experiments for each
participant and any invalid trials due to participants being unfamiliar with
the experiment or excessive movement amplitude were excluded. The total
number of valid trials amounted to 281. We will process the trials as follows.

Data Pre-Processing

Preprocessing is applied to the obtained HBO and HBR data, involving seg-
menting each set of experimental data and discarding the initial 20 seconds
of resting data to ensure signal stability. The mean of the resting state is
subtracted from the data to baseline it. Subsequently, a combination filter
is applied to remove physiological signals such as heartbeat and respira-
tion. The combination filter comprises a 1.2Hz notch filter and a bandpass
filter ranging from 0.02 to 1.5Hz, designed to eliminate slow drifts, higher-
frequency noise, and the influence of physiological signals. The comparison
of signals before and after filtering is presented in the Figure 2 below.

Figure 2: Comparison of HBO and HBR signals before and after filtering, the yellow
band represents the period from the random number being announced to its discovery
(the participant lifting their finger).
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Considering that deoxygenated signals exhibit smaller fluctuations com-
pared to oxygenated signals and are relatively noisier, this study primarily
focuses on oxygenated signals. Throughout the data processing, Individual
data for each participant was processed independently.

Pearson Correlation Matrix Analysis

Correlation matrices can reveal brain functional interactions and informa-
tion processing. Currently, some studies utilize the sum or mean of the
upper/lower triangular part, or other matrix norms, as distance measures
to quantify the overall connectivity of brain regions (Ghouse, 2020).

When calculating correlation coefficients, it is essential to balance time
resolution and smoothness. Shorter time windows are advantageous for cap-
turing rapid changes in the data, while longer time windows may yield more
reliable conclusions. Considering these factors, we adopt the following sliding
window approach to segment the data.

The filtered data is sequentially segmented in time, with a time window
of 1.5 seconds and a step size of 0.1 seconds (l = 1.5, s = 0.1s).
For the 24 channels, based on their positions, the Pearson correlation coef-
ficients between the data of each channel within a specific window are
calculated. This process results in multiple 24×24 matrices representing
Pearson correlation matrices that change over time.

Where the Pearson correlation r coefficient and correlation matrix R are
calculated as follows: Xi and Yi are the observations of the two variables, X
and Y are their means, n is the number of samples.

r =

∑n
i = 1 (Xi−X)(Yi−Y)√∑n

i = 1 (Xi−X)2
∑n

i = 1 (Yi−Y)
2
; R =


r11 r12 . . . r1m
r21 r22 . . . r2m
...

...
. . .

...
rm1 rm2 . . . rmm

 (1)

Figure 3: Comparison of Pearson correlation matrices between resting state and task
stages (a) resting stage; (b) task stage.
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Based on equations above, the correlation coefficient matrices between
channels were calculated during the resting state and task state, as shown in
Figure 3.

Assuming the occurrence of 25 new random numbers (the stimulus onset)
as the reference point at time 0s, time windows for analysis were selected
as follows: -1.5s to 0s for the resting state and 0s to 1.5s for the task
state. Correlation coefficient matrices were computed for each respective time
window.

It was noted that changes occurred after the stimulus onset in Figure 3. In
comparison to the resting stage, there was an increase in correlation values
in Region A, corresponding to the left side in the brain region map. Simul-
taneously, there was an elevation in Region B, corresponding to the central
part of the brain. Therefore,it is hypothesized that localized features within
the Pearson matrix could be identified to quantify the changes in the brain
during the task compared to the resting stage.

Local Connectivity

Considering the local variations in Pearson correlation matrices, we measure
the activation of specific brain regions by summing the correlation coeffi-
cients of adjacent channels. The specific definition is as follows: We treat
the results of near-infrared measurements as a network structure. Both the
emitter and detector are considered as nodes, while channels are simplified
as edges. After supplementation, each node is connected to three edges, as
Figure 2.4. For each node, the square of the sum of correlations between its
three edges is calculated as the local connectivity (LC). The definition is as
follows:

LC(Ev) =
(∑

path1,path2∈Ev
rvpath1,path2

)2

(2)

Figure 4: Node augmentation and local connectivity calculation methods.

To analyse the local connectivity of the nodes after excluding the edge
nodes T2 and T7 (a total of 16 nodes), the proportion of rising edges
over time is calculated. Rising edges are indicative of the actual task where
participants search for and find the required numbers. Since the occur-
rence time of rising edges may not be fixed, activation ratio is defined as
follows:

WhereLC(Tk) represents the local connectivity level for different time win-
dows,Tk is the starting time of the time window, and k is the window number.
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Considering the windows starting from 0 to 1.5 seconds after the task ini-
tiation as the 0th window, with the step size and window length detailed in
section 3.2, the numbering of each window is illustrated in Figure 6.

Figure 5: Algorithm 1: calculation of the percentage of activated trials.

Figure 6: Time window identification and segmentation into different stages.

The resting average state LCR is calculated by averaging over the time win-
dows from the T−15 to -T−24, which is, the mean value of local connectivity
is computed for the ten time windows in the black part in Figure 6. For the
task stage, computation starts from the -10th time window, following the
division illustrated in Figure 6. At this point, some of the task stage data has
already appeared in the windows. Using a threshold of 2.5, activation of a
node is recorded when the difference between LC

(
Tk
)
and LCR exceeds 2.5.

The activation ratio, ratioactivated is calculated, stored in the sequenceratio
over time. Appropriate time windows and regions of interest (ROIs), i.e.,
nodes where activation occurs more rapidly and where the overall propor-
tion of activations is larger after the stimulus onset, were selected by analysing
changes in activation ratios across all trials.

For each node’s LC levels before and after the task, a t-test with FDR
correction is performed. When choosing time windows, the changes in LC
curve gradients and the establishment of an activation ratio threshold are
considered to ensure a sufficient number of activation events are observed in
a relatively short period. Through this design, we ensure the reliability of the
interpretation of these changes using statistical methods.
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RESULT

The change in LC was calculated according to Equation 2. An increase in LC
levels during the task was observed at nodes R1, R2, R4, R5, R6, R8, T10,
and T5. Figure 7 illustrates an example of LC at the T5 location with stan-
dard error bars. In the figure, time point 0 represents the first time window
after the stimulus onset, i.e., the number announcement. All time windows
before -1.5 seconds are entirely within the resting state. It is evident that
the LC level shows an increase around the first time window of the task
stagr, aligning with our hypothesis. Additionally, it is shown that the stan-
dard error (SE) increases during the task process (after 0 seconds) compared
to the resting state.

Figure 7: LC at the T5 location with standard error (SE) bars.

To select nodes sensitive to stimuli, i.e., to determine regions of interest
(ROI), it is necessary to calculate activation ratios. For threshold selection
and statistical methods, refer to Algorithm 1. Figure 8 illustrates the changes
in activation ratios over time for different nodes.

Figure 8: Activation ratio curve for each node.
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As shown in the figure, some nodes exhibit significant gradient changes
around 0.5 to 1 second, such as R1, R2, R8, T5, T8, T3, R6, while the
remaining parts of the LC curves show lower gradient increases. Based on
the abscissa of the inflection point and the window length, the time window
representing the brain response during the task stage is chosen as 0.5 to 2
seconds after the stimulus occurrence, corresponding to the window number
k = 5, which corresponds to the time period of 0.5 to 2 seconds following
the task.

Furthermore, with a LCR threshold set at 2.5 that the difference between
resting and task states is most nodes exhibit enhanced local connectivity (LC)
after stimulation, with certain nodes showing a more pronounced response,
characterized by surpassing the threshold more rapidly, as LC

(
Tk
)
−LCR >

2.5. This is detailed as follows : R1, R2, R4, R6, R8, T3, T5, T9 all exhibit
activation probabilities reaching 70%within 3 seconds of the task in all trials.
Among them, the nodes of R1, R2, T5, R8, R6 and T3 show clear inflection
points in the gradient and achieve an overall activation proportion of 70%
relatively quickly, confirming them as Region of Interest.

To assess the reliability of the ROI and time window, a paired t-test was
conducted to compare the average local connectivity LCR during the resting
state with the LC(T5) within the time window of 0.5∼2 seconds after stimu-
lation. The false discovery rate (FDR) correction was applied to address the
issue of multiple comparisons in different participants.

The results indicated that nodes on the left andmiddle as R1(p= 0.006182),
T5(p = 0.040514), and R8(p = 0.028655) showed a significant increase in
LC through the t-test (FDR-corrected p-value < 0.05), while T4 exhibited a
significant decrease (p = 0.045272. Performing the same analysis on differ-
ent time windows of resting-state data did not yield any nodes passing FDR
correction. This confirmed the effectiveness of the chosen time windows for
testing and further narrowed down the selection of reliable nodes in the ROI
areas to R1, T5, and R8. Additionally, a significant decrease was observed
in some nodes, suggesting the compensatory effect of cerebral blood flow in
the brain network.

Furthermore, in comparison with traditional methods, the selected ROI
regions were generally consistent.

Figure 9: Using the mean value of HbO2 and the change in LC features, the activated
brain regions and channels were identified separately. In (a), the selected feature is
the mean value of HbO2 during the 8–10 seconds of the task. In (b), yellow nodes
represent the ROI areas chosen in this study, with red edges indicating significance in
the statistical tests.
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DISCUSSION

This study selected local connectivity as an indicator in the correlation matrix
and utilized the high spatial resolution and appropriate temporal resolu-
tion of fNIRS to analyse the data, examining brain activation and potential
cognitive processes during a search task. This feature proved effective in
distinguishing between task and resting states, confirming varied levels of
activation in different regions of the prefrontal cortex (PFC) during the search
process.

This study proposed the LC feature, considering information frommultiple
channels in the same region, to analyse HBO data. The results showed an
increase in LC in certain channels, but the variance also increased during the
task. This may be attributed to the variable duration of cognitive-executive
tasks, leading to an unpredictable timing of the LC increase and subsequently
causing an increase in variance in the task stage curve.

The activation proportion change over time for a specific node was statis-
tically analyzed across all trials, considering both gradient change inflection
points and overall activation proportions in the activation proportion curve.
This was done to determine suitable time windows and ROI areas. The
selected ROI areas were R1, T5, R8, R6, and T3. It was observed that the
left ROI areas exhibited earlier activation and higher overall activation pro-
portion, providing insights into the cognitive load during the search process.
Consistent with previous studies, this activation was mainly located in the left
ventrolateral and dorsolateral cortices, areas actively involved in searching,
maintaining memory information, judgment, and other cognitive functions
(Bonetti et al., 2019). Additionally, studies such as (Holloway, 2010) suggest
that features related to symbolic processing appear earliest on the left side
compared to non-symbolic processing, reflecting increased involvement of
the left brain areas in tasks involving symbolic information search consistent
with the results of this study.

It is noteworthy that, following FDR correction on the nodes, only a subset
of ROI regions passes the correction. This indicates that the local connectiv-
ity features of R1, T5, and R8 are more discriminative. This suggests that
the upper half of the posterior lateral cortex plays a crucial role in the task
process, which is in agreement with the findings of Carrieri et al. (Carrieri,
et al., 2018). However, it does not imply that only the features of these nodes
can be used to distinguish working states. Considering the activation of mul-
tiple nodes comprehensively may provide a more accurate assessment of the
brain’s state.

Previous studies often utilized zero-order or first-order features such as
single-channel mean slope with a tendency for time lag (Heger, 2013; Herff,
2014). This study attempted to extract additional features from HBO con-
centration change data. The activated brain regions selected using the new
features are shown in Figures 9, and are generally consistent with the
traditionally extracted activated channel areas obtained by averaging single-
channel values over 8–10 seconds. However, the changes in these features
occur more rapidly, appearing as early as 2.5 seconds after the response. The
features extracted in this study could expand the understanding of functional
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connectivity and cortical activation compared to traditional methods within
the brain network.

CONCLUSION

In this study, to rapidly ascertain the brain’s state during task execution, we
introduced a specialized local connectivity feature tailored for the search task.
This feature is derived from Pearson correlation coefficients, reflecting the
degree of mutual association within specific regions of the brain. Regions and
time windows adapted to this feature were selected, and statistical analyses
were conducted. The results revealed that under cognitive-executive condi-
tions, bilateral dorsolateral prefrontal cortex and left ventrolateral prefrontal
cortex were activated, and the emergence of this feature occurred within the
first 2 seconds of the task. This novel feature proposed in our study appears
faster compared to traditional features, enable the judgment of early tasks,
and is expected to be used for identifying the brain’s task states.
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