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ABSTRACT

Stress can be an indicator of discomfort with a task, which is of relevance for training
in safety-critical fields. Knowing a trainee’s stress level could be especially useful when
objective performance outcomes are unclear or when success in training tasks alone
is insufficient to predict proficiency in real-life safety-critical scenarios. In this study,
stress classification models trained on open-access physiological data and integrated
in Sensor Hub, a multi-sensor system for near real-time monitoring, were developed.
To obtain ground-truth neurophysiological data recorded under high-stress condi-
tions, raw electrocardiogram (ECG) and respiration data in an open-access database
sourced from PhysioNet, consisting of 57 participants with arachnophobia watch-
ing spider videos, was used. Machine learning algorithms were trained on features
extracted from these raw signals. A first set of algorithms focused on heart rate, respi-
ratory rate, and heart rate variability (HRV) features. The second set included feature
normalization according to an individual’s baseline. Models based on individually nor-
malized features reached balanced prediction accuracy >80%. A pilot data collection
was conducted with a different sensing device than the device used to obtain these
measures. Qualitative analysis revealed that real-time R-R intervals from the new sen-
sors were sensitive to artifacts, suggesting that the model relying on HRV features
may not be reliable. The model that used only the baseline normalized heart and res-
piratory rate was selected as the final choice, exported in the Open Neural Network
Exchange format and integrated into the Sensor Hub platform, providing predictions
every second. This research demonstrates the potential of open-access data for pro-
viding a solid starting point for training cognitive models, while also highlighting the
necessity of real-time testing to confirm that models can generalize across different
sensors and processing pipelines.
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INTRODUCTION

Psychological stress is a condition that can importantly affect behavior. It can
be defined as “a particular response of an organism to an identified demand
stimulus” arising when one experiences a situation that “exceeds his or her
real or perceived abilities to successfully cope with the demand, resulting
in disturbance to his or her physiological and psychological equilibrium”
(Kolbell, 1995, p. 31). Stress can be experienced in the workplace (Colligan
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and Higgins, 2006). Indeed, stress has been widely observed across multi-
ple operational domains, particularly in high-stake and extreme domains
such as air traffic control (Hodgetts et al., 2015), pedestrian traffic work
(Marois et al., 2018), piloting (Dehais et al., 2014) and public safety oper-
ations (Queirós et al., 2020). These domains are typically characterized by
important cognitive challenges pertaining to multitasking, cognitive overload
and distraction, which are all prone to errors. Moreover, errors in these
domains may pose great risks upon people and infrastructure, which can
further increase the pressure experienced by operators. However, experience
and comfort with a task may reduce the stress experienced by operators in
such domains. As such, psychological stress could represent a key indicator of
comfort and proficiency on a given task, particularly for trainings in safety-
critical fields. The current research was specifically interested in developing
a stress prediction model to be applied for training public safety personnel.

Continuous stress monitoring emerges as a valuable tool for improv-
ing and individualizing training, offering instructors a more comprehensive
understanding of each student’s overall task comfort and enabling timely
interventions based on stress levels at specific moments. Different strategies
can be favored for monitoring stress. Subjective reports, either from an exter-
nal rater or in the form of a self-report, can first be used. This strategy is
often used, relying on a variety of scales which have been validated empiri-
cally (Massood et al., 2012). Self-reported measures are however difficult to
integrate for real-time assessments; they often require an operator to interrupt
their tasks to answer questions about their state, which may hinder perfor-
mance on the task. Furthermore, such ametric may sometimes be biased (Sato
and Kawakara, 2011). Neurophysiological recordings represent an alterna-
tive to these types of measures. Recent advancements in sensors’ mobility
and edge computing capacities have allowed for a plethora of new appli-
cations for human state monitoring, including for the online evaluation of
stress.

Data collected by physiological monitoring tools can be turned into action-
able information to provide a person’s cognitive, medical or operational
portrait in a real-life situation if proper high-level contextual information
is provided. For instance, Berka et al. (2010) presented an accelerated train-
ing strategy based on an interactive neuro-educational technology, exploiting
electroencephalography power bands as well as heart activity. Marksman-
ship trainees’ ideal state for firing a weapon was identified thanks to these
measures. Training performance of marksmen supported by the neuro-
educational technology improved significantly more from baseline to final
trials compared with control marksmen performing the training without aid.
According to the authors, such an improvement was driven by a lower state of
stress, increased alertness and better match between state and task demands.
Similarly, Krätzig et al. (2021) relied on heart rate measures as indicators of
stress management among police officers taking part in an advanced reactive
shooter course. Overall, such work shows how physiological monitoring can
contribute to improve training efficiency.

Recognizing the potential of using non-invasive wearable sensors to
assess stress continuously throughout training, previous work led to the
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development of a near real-time data integration, synchronization, and pro-
cessing nexus to use for training applications. In Marois et al. (2023),
we presented the different steps carried out to develop a context-adapted
monitoring solution for public safety personnel training, driven by users’
needs. The solution developed relied on a set of sensors including: a smart
garment with electrocardiography (ECG), respiration and acceleration com-
ponents; a smartwatch with notification, accelerometer and monitoring
capacities; a wearable recording functional near-infrared spectroscopy; and
a phone equipped with a GPS, a camera and a microphone. Using the Sen-
sor Hub solution (i.e. a multi-sensor system for near real-time monitoring;
Gagnon et al., 2014), data collected from these sensors can be persisted and
processed to extract features for the real-time prediction based on an ensem-
ble of machine learning models. As outlined by subject-matter experts from
two Canadian public safety organizations, such models should be able to
predict and depict stress levels of trainees. As such, from the predictions pro-
vided by the Sensor Hub, a dashboard was developed with the capacity to
provide views for live monitoring, after action review and analysis.

The goal of this study was to develop stress classification models that could
be integrated into the Sensor Hub to provide actionable information for train-
ing public safety personnel. To develop a proof-of-concept model of stress
based on the raw physiological signals currently available in Sensor Hub,
we relied on an open-access database representing instances of stress among
a population of spider-fearful individuals exposed to spider videos (Ihmig,
Gogeascoechea, Neurohr-Parakenings et al., 2020). ECG and respiration
data were collected from the participants. Different machine learning tech-
niques were used to develop stress prediction models according to a series of
features extracted from the ECG and respiration data, such that the combina-
tion of cardiorespiratory features can be used to generate a higher-level metric
(i.e., stress) that is more easily interpretable by instructors than individual
features alone.

METHOD

Participants

Recruitment took place at Saarland University in Germany. Eighty spider-
fearful participants took part in the study (age range: 18–40); however, the
recordings of 57 participants are publicly available on PhysioNet. Of these
57 participants, 53 participants were included in the current analysis, after
discarding the recordings of four participants due to missing values.

Procedure

After having provided informed consent, all participants were exposed to 16
1-min spider video clips sampled from TV documentaries showing detailed
shots of spiders. Before starting the exposure session, participants went
through a 1-min demo clip. Clips 1–8 and clips 9–16 were grouped and pre-
sented in a random order. After each clip, participants were asked how many
spiders were presented in the clip. A 5-min relaxation period followed the
presentation of all 16 clips.
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Material and Apparatus

Throughout the experiment, participants’ ECG, respiration, and electroder-
mal activity signals were collected with a BITalino biosignal measurement
device (PLUX – Wireless Biosignals S.A., Lisbon, Portugal) at a sampling fre-
quency of 100Hz. ECG electrodes were placed according to a standard lead II
configuration, and respiration was measured using a chest strap with a piezo-
electric sensor. The current analysis did not include electrodermal activity
signals, as these are not recorded by the wearable devices already integrated
into the Sensor Hub platform.

Data Processing and Analysis

Several steps were carried out to process the data prior to model training (raw
data can be found in Ihmig, Gogeascoechea, Schäfer et al., 2020). First, data
from two periods was selected and labelled as two within-subject conditions:
a) the first 5 minutes of the exposure session was selected for the high stress
condition (aiming to reduce possible habituation to the stimuli); and b) the
5 minutes of the resting period at the end of the experiment was selected
for the low stress condition, such that the two conditions used equal-length
segments.

Signals from these two time-windows were then preprocessed. Prepro-
cessing and feature extraction was performed using version 0.2.7 of the
open-source Neurokit2 Python library (Makowski et al., 2021). The library’s
default algorithms for ECG and respiration were applied: The raw signals
were first filtered to reduce noise, from movement or powerline interference,
for example. A 0.5-Hz high-pass Butterworth filter was used for filtering the
ECG signal, followed by filtering out powerline interference. The respiration
signal was filtered using a band-pass Butterworth filter with cutoffs of 0.5
Hz and 3 Hz. Peaks were detected from the ECG and respiration signals to
extract the heart and respiratory rate, respectively.

Following the initial preprocessing of signals, further features were
extracted. In addition to the heart and respiratory rate, two heart
rate variability (HRV) features were extracted: high-frequency power,
between 0.15-Hz and 0.4-Hz, and low-frequency power, between 0.04-Hz
and 0.15-Hz. To account for inter-individual variability in physiology, such
as an individual’s resting heart rate, normalization of physiological features
according to each individual was implemented, a common preprocessing
step in stress classification (Giannakakis et al., 2019; Nardelli et al., 2015;
Ollander et al., 2016; Parent et al., 2019). This involved dividing each feature
value by a reference feature value (Parent et al., 2019), which was calcu-
lated by taking the mean of the feature values from the two conditions (“high
stress” and “low stress”) for each participant. This individual-based normal-
ization was applied to all the features (i.e. the heart rate, respiratory rate,
high-frequency HRV and low-frequency HRV).

Despite the common use of HRV features and individual-based normal-
ization in stress classification, it is important to acknowledge their potential
risks for the envisioned real-time monitoring context. HRV features can be
sensitive to artifacts and missing data (Baek& Shin, 2017; Cajal et al., 2022),
which are often present in data collected outside of controlled laboratory
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conditions. Furthermore, while normalization was possible using the entire
recording from the current training dataset, the optimal method for imple-
menting baseline normalization in real-time scenarios, where only historical
data can be used, remains to be determined (Mishra et al., 2020). In light of
these considerations, machine learningmodels were developed using different
groups of features to evaluate the trade-offs of incorporating HRV features
and individual-based normalization. Four feature sets were selected: a) using
only the heart and respiratory rates (Rate only models); b) using the heart
rate, respiratory rate and HRV power features (Rate and HRV models); c)
using only the normalized heart and respiratory rates (Normalized rate mod-
els); and d) using the normalized heart rate, respiratory rate and HRV power
features (Normalized rate and HRV models).

For all four feature sets, two classification algorithms were selected,
namely a random forest classifier and a logistic regression, each using the
default hyperparameters from the Scikit-Learn Python library. Given limited
data for model optimization, these two algorithms were chosen to compare a
simpler linear classifier to a more complex non-linear classifier. We used 10-
times repeated 5-fold participant-wise cross-validation to obtain the model
performance, which randomly partitioned the data into five folds 10 times,
aiming to maximize the use of the available data for both training and testing
and reduce the variance in the performance estimate. This procedure gener-
ated 50 random forest classifiers and 50 logistic regression models for each
feature set. Based on the feature set and algorithm combinations with the
highest mean balanced accuracy, the best models were exported in the Open
Neural Network Exchange (ONNX) format and integrated into the Sensor
Hub platform (see the dashboard shown in Figure 1; cf. Marois et al., 2023),
in order to provide predictions every second.

Figure 1: Dashboard showing model predictions and data collected from one partici-
pant using the monitoring solution for public safety personnel training.
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RESULTS

Each feature extracted from the ECG and respiration signal was first analyzed
(see Figure 2). Differences in distribution pattern could be observed for the
heart rate and, to some extent, the respiration rate features. Paired-sampled
t-tests were performed to compare both high stress and low stress conditions.
The average heart rate value was significantly higher in the high stress condi-
tion (M = 85.21, SD = 11.88) than in the low stress condition (M = 79.28,
SD = 9.45), t(51) = 6.20, p <0.001, Cohen’s d = 0.86. The same pattern
was observed for the normalized heart rate measures with higher values for
the high stress condition (M = 1.03, SD = 0.04) as opposed to the low stress
condition (M = 0.97, SD = 0.04), t(51) = 6.18, p <0.001, Cohen’s d = 0.86.
The other tests performed on the other features failed to reach significance,
ts < 1.47, ps > 0.147, Cohen’s ds < 0.21.

Figure 2: Distribution of all features extracted from the ECG and respiration signal
according to the stress condition (A: heart rate; B: low-frequency HRV; C: high-
frequency HRV; D: respiratory rate; E: normalized heart rate; F: normalized low-
frequency HRV; G: normalized high-frequency HRV; and H: normalized respiratory
rate).

The features were then used as inputs for the machine learning models.
Results for the eight types of models are presented in Figure 3. As depicted,
random forest classifiers generally outperformed the logistic regression mod-
els. The best performance was observed across the Normalized rate and
HRV models, more specifically with logistic regression, reaching a mean
balanced accuracy of 83.7% (SD = 10.85), followed by the random forest
using the same feature set (M = 82.18%, SD = 10.40). The set of Nor-
malized rate models performed similarly (logistic regression: M = 80.16,
SD = 10.29.; random forest: M = 80.86, SD = 9.71). The models contain-
ing non-normalized features, however, performed poorly. The mean balanced
accuracy for the Rate only models was 58.05% (SD = 5.74) for logistic
regression and 63.08% (SD = 8.95) for the random forest. For the Rate and
HRV model, mean balanced accuracy for logistic regression and the random
forest was 58.78% (SD = 5.88) and 64.45% (SD = 7.80), respectively.
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Figure 3: Box plot depicting the balanced accuracy on unseen participants for the four
approaches depending on the type of machine learning model for the prediction of
high vs. low stress state.

Consistent with Benavoli et al.’s (2017) method for comparing the perfor-
mance of multiple classifiers, a Bayesian analysis was used to evaluate the
balanced accuracies of each type of model generated across the 50 iterations.
A repeated-measures factorial analysis of variance (ANOVA) Bayesian equiv-
alent test was performed with a 2 (classifier: logistic regression vs. random
forest) × 4 (feature set: Rate, Rate and HRV, Normalized rate, and Normal-
ized rate and HRV). The test provided strong evidence favoring an effect of
the two factors. As shown in Table 1, the data observed are about 1.06×1053

times more likely under the full model comprised of the two factors and of
their interactions than under the null model (for details on the interpretation
of the Bayesian analysis, see van den Bergh et al., 2020). Additional anal-
ysis supported that, among the non-normalized models, the random forest
models yielded higher balanced prediction accuracies (with BFs01 < 0.022,
providing evidence against the null hypothesis), as opposed to the normal-
ized models which were statistically equivalent from one model to another
(with BFs01 > 3.380, favoring the null hypothesis). Normalization of the
data yielded higher balanced accuracies as each non-normalized model (e.g.,
the Rate only model) was statistically outperformed by its normalized model
equivalent (e.g., Normalized rate only).

Table 1. Model comparison for all models under the consideration for the data.

Model p(M) p(M|D) BFM BF01 %error

Classifier + Feature
set + Classifier *
Feature set

0.20 >0.99 1468.15 1.00 -

Classifier + Feature
set

0.20 <0.01 0.01 406.43 2.24

Feature set 0.20 2.63×10-4 <0.01 3786.69 2.38
Classifier 0.20 8.61×10-52 3.44×10-52 1.16×1052 2.15
Null model 0.20 8.61×10-52 3.78×10-53 1.06×1053 1.82
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A pilot data collection was conducted with a different sensing device used
for heart rate, respiratory rate, and HRV than the device used to obtain these
measures in the open-access database. More precisely, signals were collected
with a Hexoskin garment worn by Thales Research& Technology employees
as part of their work on this project. Qualitative analysis of the collected
data revealed that real-time R-R intervals generated from the sensors were
sensitive to artifacts (see Figure 4), suggesting that the model relying on HRV
features may not be reliable. Note, however, that the Hexoskin also provides
a more advanced processing method for computing R-R intervals through
their server, but this method was not integrated in the Sensor Hub platform
for real-time processing.

Therefore, the model that used only the baseline-normalized heart and res-
piratory rate was chosen and implemented into the Sensor Hub solution. For
this implementation, a new feature was developed on the monitoring plat-
form to enable the use of baseline recordings from the dashboard developed
in Marois et al. (2023) for the calculation of normalized features.

Figure 4: Sample of the R-R intervals (shown in beats per minute) recorded with Sensor
Hub during a pilot data collection, showing unrealistic and missing values.

DISCUSSION

The goal of this study was to develop a stress prediction model for real-
time stress monitoring for public safety personnel training. To reach this
goal, we used an open-access dataset comprised of physiological signals
of spider-fearful participants. We extracted the heart rate, respiratory rate,
and frequency-domain HRV features, which were used to train machine
learning models. The best-performing model (mean balanced accuracy:
83.7%) used the normalized heart rate, respiratory rate and HRV. How-
ever, qualitative analysis of pilot data collected with the Sensor Hub
solution for real-time monitoring suggested that the HRV features were
unreliable due to R-R interval calculation problems. Therefore, the best-
performing model using only the normalized heart and respiratory rate,
without any HRV features (balanced accuracy: 80.86%), was chosen. This
final model was integrated into the trainee monitoring dashboard discussed
by Marois et al. (2023), using the dashboard to indicate which data can be
used for baseline normalization and providing a stress prediction value every
second.
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While the integration of this model is an advancement towards a neuro-
physiological stress monitoring system for public safety officers, additional
research is required to validate the system’s suitability for its intended context.
It should be noted that the stress experienced by the spider-fearful individuals
in the training dataset may not be perfectly equivalent to the stress encoun-
tered by public safety officers during training. Its intensity and nature can
differ from that of a public safety training program. Despite similarities in
autonomic responses and common brain activity across different subtypes of
stress, anxiety, and fear, some patterns of neurophysiological expression are
thought to vary. For instance, Schaefer et al. (2014) showed that normative
fear activates a network of threat-responsive brain regions whereas phobic
fear activates larger arrays of brain regions. Furthermore, over time, par-
ticipation in certain training programs may influence baseline physiological
parameters such as HRV (e.g., Jouanin et al., 2004). Consequently, the car-
diorespiratory feature patterns present in the training data might differ from
those exhibited by public safety officers under stress during training, due to
population and task disparities.

CONCLUSION

By developing and integrating a stress model into a near real-time dash-
board for supporting training of public safety personnel, the current work
demonstrates how raw physiological data has the potential to be turned into
actionable information useful for applied contexts. Future work will aim to
quantitatively validate the entire processing pipeline in the envisioned con-
text by testing the developed system with public safety officers undergoing
stress.
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