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ABSTRACT

Sustaining attention is crucial in tasks like piloting and driving, significantly impact-
ing cognitive performance and driving safety. Addressing the issue of diminishing
vigilance, it becomes imperative to develop advanced systems, including neuroadap-
tive technologies aiming to detect and facilitate adaptive control of vigilance states. In
pursuit of this aim, the current study recruited 32 participants (21 males, 11 females)
to monitor their vigilance decline during a 60-minute simulated driving task in a
monotonous environment. We used the Karolinska Sleepiness Scale (KSS), Stanford
Sleepiness Scale (SSS), Psychomotor Vigilance Task (PVT), along with neurophysio-
logical specialized equipment: Enobio 8 electroencephalogram (EEG), Empatica E4,
Polar H10 and Tobii Nano Pro eye tracker. Participants self-reported their loss of vigi-
lance by pressing a marker on the steering wheel. In this study, we report the results
to assess the experimental setup capacity in inducing lack of vigilance. We found
that the mean KSS score significantly increased, from “fairly alert” to “some signs of
sleepiness”, and the SSS increased from “being able to concentrate” up to “a some-
what foggy state”. Results from the PVT showed a significant increase in the mean
reaction time as well. Participants self-reported their initial lack of vigilance within
the first 18 minutes of the experiment. The study’s outcomes emphasize a consis-
tent decline in vigilance with increased subjective sleepiness score and reaction time
response post-driving. In conclusion, the study confirmed the effectiveness and valid-
ity of the simulated testbed in inducing vigilance decline and set the stage for exploring
neuroadaptive control strategies to enhance task performance and safety.

Keywords: Vigilance, Simulated driving, Karolinska sleepiness scale, Stanford sleepiness scale,
Psychomotor vigilance task, Driving behaviour, Driving safety, Adaptive control, Neuroadaptive
technologies

© 2024. Published by AHFE Open Access. All rights reserved. 45

https://doi.org/10.54941/ahfe1004737


46 Mahu et al.

INTRODUCTION

Vigilance is essential in cognitive performance, especially for tasks demand-
ing prolonged attention, such as aviation and driving (Parasuraman, 1979;
Warm, 1980). It is critical in dynamic and safety-sensitive situations where
inattention can lead to severe consequences (Durmer and Dinges, 2005). The
challenges of prolonged cognitive tasks are not limited to reduced operational
efficiency; they involve a multifaceted interplay that can cause fatigue, slower
reaction times, and a higher likelihood of errors (Campagne et al., 2004;
Pattyn et al., 2008). In emergencies, where rapid and corrective decision-
making is crucial to prevent harm, the decline in vigilance is especially
significant. This network of cognitive dynamics is particularly noticeable in
scenarios requiring quick decision-making and corrective actions. Warm and
Finomore (2008) highlighted the vital link between vigilance and decision-
making, noting that a decline in vigilance impairs sustained attention and
adversely affects the cognitive processes necessary for fast and effective
decision-making in critical scenarios.

Real-time monitoring of vigilance states is crucial for addressing chal-
lenges in various high-stakes environments. Neurophysiological indicators
have become invaluable in this effort, providing insights into cognitive
states associated with vigilance paving the way for neuroadaptive monitoring
(Mackie, 2013; van Weelden et al., 2022). This innovative approach dynam-
ically responds to individuals’ neurophysiological signals, allowing real-time
adjustments in monitoring, crucial for safety-sensitive situations. Utilizing
artificial intelligence (AI) algorithms, neuroadaptive systems can understand
and adapt to specific cognitive patterns, ensuring a personalized and accu-
rate vigilance assessment. However, the success of neuroadaptive monitoring
relies on robust data. Employing a multimodal approach that integrates var-
ious measures is essential, enriching the dataset for a nuanced understanding
of vigilance states. Rigorous data collection methodologies are crucial to
ensuring the model’s effectiveness.

The potential for revolutionizing vigilance assessment lies in integrating
neuroadaptive monitoring and high-quality data, offering insights to enhance
safety and performance in critical domains.

To design and develop a robust neuroadaptive intelligent system, the foun-
dational requirement is the acquisition of valid data that accurately represents
vigilance. This data forms the basis for the subsequent development of pre-
cise prediction models essential for real-time vigilance detection. A crucial
first step is establishing a validated simulated testbed capable of effectively
inducing vigilance decline. In this work, we designed an ecologically-valid,
controlled test environment to monitor the driver’s vigilance during a driv-
ing task, using self-reporting, behavioral, and neurophysiological measures.
Having a realistic simulation that can induce loss of vigilance will provide
valuable data for applied research in neuroadaptive systems. This paper
reports the validation check to confirm the simulation environment induced
a vigilance decline.

The rest of the paper is structured as follows. The next section reviews
the main vigilance measures relevant to driving. Then, the simulation
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environment and experimental method are presented, followed by the main
results confirming the vigilance decrement. The discussion puts these results
in perspective with neuroadaptive systems.

LITERATURE REVIEW

Different approaches have been explored to monitor vigilance states, par-
ticularly hypovigilance (Kerick et al., 2013; Marois et al., 2023; Oken et al.,
2006). These approaches encompass various measures, including self-reports,
behavioral, physiological, and neurological indicators. Self-reporting tools
such as the Karolinska Sleepiness Scale (KSS) and Stanford Sleepiness Scale
(SSS) capture individual perceptions of drowsiness or vigilance (Dorrian et al.,
2008; Luna et al., 2022). KSS and SSS are often used as gold standard to
measure vigilance in human studies (Marois et al., 2023).

Behavioral measures assess the impact of vigilance decline over a focal task
(Kashevnik et al., 2021). The Psychomotor Vigilance Task (PVT), widely uti-
lized for assessing alertness and behavioral vigilance (Dinges et al., 1997),
involves measuring cognitive performance by measuring the reaction time
to a visual stimulus. The Mackworth Clock Test is another behavioral tech-
nique that measures sustained attention by assessing an individual’s ability
to detect anomalies in a clock-like pattern (Mackworth, 1948). Furthermore,
the NASA Task Load Index (NASA-TLX), initially developed for workload
assessment, finds applications in evaluating vigilance demands in complex
tasks, providing subjective insights into cognitive processes (Hart, 2006). In
the context of driving, missing traffic signals or doing erratic manoeuvers can
indicate a hypovigilant and distracted state. For instance, the Lane Change
Test (LCT) is employed in driving simulations and can be used to evaluate
the ability to make timely and accurate lane changes, which reflects cognitive
alertness (Harbluk et al., 2007). These measures are, however, prone to biases
and external influences, such as motivation, emotional states (Pessoa, 2009)
and other factors that might affect the person’s performance on the primary
task.

Neurophysiological and physiological measures present a compelling
alternative by investigating fluctuations in brain activity and autonomic
responses. Physiological measures involve analysing the central or periph-
eral nervous system to estimate sustained attention deployment (Oken
et al., 2006; Rush et al., 2019). Parameters such as heart rate variability
(HRV) and electrodermal activity sensors offer valuable insights into auto-
nomic nervous system responses and physiological arousal (Lutnyk et al.,
2023; Regula et al., 2014). Pupillometry i.e., monitoring changes in pupil
size, emerges as a nuanced tool providing unique perspectives on cogni-
tive load, attention variations, and arousal levels (Granholm et al., 1996;
Piquado et al., 2010). Eye-tracking technology and facial expression analy-
sis contribute to understanding how vigilance fluctuations manifest in gaze
behavior and emotional responses (Biondi et al., 2023; Bitkina et al., 2021;
Rahman et al., 2020). Integrating an HD camera system enhances the
exploration of cognitive workload and emotional states (Stemberger et al.,
2010). Functional near-infrared spectroscopy (fNIRS) allows for the non-
invasive assessment of brain activity by measuring changes in oxygenated and
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deoxygenated hemoglobin levels, providing real-time insights into cognitive
processes (Leon-Carion and Leon-Dominguez, 2012). This imaging tech-
nique enriches the understanding of cerebral oxygenation dynamics during
tasks demanding sustained attention. The rationale behind these physiolog-
ical measures is deeply rooted in the significant implication of the locus
coeruleus-norepinephrine (LC-NE) system in attention-related activities. The
secretion of norepinephrine (NE) across multiple brain areas influences vig-
ilance, attention orienting, arousal, and the sleep–wake cycle (Aston-Jones
and Cohen, 2005; Sara and Bouret, 2012). Neurological indicators illumi-
nate the intricate dimension of vigilance, providing real-time examination of
brain activity and cognitive fluctuations (Graw et al., 2004; Mackie, 2013;
Mullen et al., 2015). Electroencephalography (EEG) offers high temporal res-
olution of brain activity and has successfully assessed vigilance and cognitive
workload (Akin et al., 2008; Zhou et al., 2022).

The literature on various vigilance measures is dispersed across different
research approaches, posing challenges in integrating findings. Each measure
category has inherent strengths and limitations, but their combined use offers
a more nuanced understanding of cognitive states. Subjective measures pro-
vide valuable insights into individual perceptions of drowsiness or vigilance,
yet ensuring the validity of self-reports is challenging due to susceptibility to
individual variations and external influences. Behavioral measures, reflecting
observable actions in diverse contexts, contribute to vigilance understanding
but face challenges in interpretation, showing variations across individuals
and settings, limiting broad applicability. Physiological measures, analysing
the central or peripheral nervous system, offer respectively direct and indi-
rect insights into autonomic responses and physiological arousal incurred by
variations in vigilance. However, physiological responses can be influenced
by individual variations, external stimuli, and emotional states, necessitat-
ing a context-sensitive and multidimensional approach for comprehensive
vigilance assessment. Neurological measures enhance vigilance understand-
ing by capturing real-time cognitive processes and emotional responses. Still,
challenges arise from the intricate nature of these measures, creating diffi-
culties in interpretation and establishing universal benchmarks for vigilance
assessment.

In a recent scoping review on psychophysiological indicators of vigilance,
Marois et al. (2023) found the gold standard of vigilance measurements to
be the subjective questionnaires KSS and SSS along with the PVT behav-
ioral test. Most of the studies reviewed found a strong correlation between
these gold standards and EEG-derived measures. This review outlines that
to comprehensively assess vigilance, an integrated approach is required
combining subjective, behavioral, physiological and neurological measures.
Neurophysiological measures, offering continuous quantitative data, could
serve as useful indices of hypovigilance that could be fused and integrated
into neuroadaptive systems relevant for monitoring operators’ vigilance
levels.
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Objective

The overarching goal of this study is to contribute to the development
of an AI-based neuroadaptive intelligent system designed to detect real-
time vigilance states. To this end, we employed a multimodal approach,
integrating a comprehensive array of promising behavioral and neurophys-
iological measures, including the Karolinska Sleepiness Scale (KSS), Stan-
ford Sleepiness Scale (SSS), NASA-TLX, Psychomotor Vigilance Task (PVT),
electroencephalography (EEG), electrodermal activity (EDA), electrocardio-
graphy (ECG), eye tracking, and facial features. The integration of these
measures facilitates the assessment of vigilance states under controlled condi-
tions. Besides, relying on both intrusive (EDA, ECG, EEG) and non-intrusive
measures (eye tracking, facial analysis, behavioral) allow for the devel-
opment of models that could be more easily integrated within different
work contexts. It is important to note that the current study specifically
assesses the simulated testbed’s ability to induce vigilance decline during
prolonged simulated driving. We use PVT, KSS, and SSS to analyse the
testbed’s effectiveness in causing vigilance decline by comparing baseline
and post-driving responses. This initial phase serves as a foundation for
further investigations into the development of a neuroadaptive intelligent
system.

METHOD

Participants

A total of 32 participants (21 males and 11 females) were recruited
for the driving experiment, aged between 18 and 35 years (M = 26.5,
SD = 4.9). Eligibility criteria included having a valid driver’s license, nor-
mal to corrected vision, absence of cardiovascular disorders or pacemaker
usage, and no diagnosis of neurological diseases. Participants underwent
a health screening questionnaire to ensure their suitability for the exper-
iment. The study obtained approval from the Institutional Review Board
[CER-2324-11-D] and all participants signed a consent form before taking
part in the study. All experiments were performed before lunch, between
9 a.m. and 12 p.m., when participants were the most alert. Partici-
pants were asked to abstain from caffeine, alcohol, nicotine, and cannabis
on the day of the experiment. They received a monetary compensation
of $40 CAD.

Measures

The study adopted a multimodal approach, integrating an extensive range of
measures to capture the participant’s subjective, behavioral and neurophysi-
ological responses during the driving task. We used the Enobio 8 headset for
EEG, Empatica E4 wristband for EDA activity monitoring, Tobii Nano Pro
eye tracker for oculometry, Polar H10 chest strap for ECG, and a 1080p USB
webcam for facial features analysis (see Figure 1).
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Figure 1: Illustration of the experimental set-up with neurophysiological equipment.

We used three gold standard measures (see Marois et al., 2023): KSS on a
9-point scale, SSS on a 7-point scale and PVT.We used the PVT implementa-
tion provided by PC-PVT 2.0 (Reifman et al., 2018) that consists of reacting
as fast as possible to a stimulus onset for 10 minutes. The main results
obtained from the PVT are the mean and median reaction time (RT), mean
1/RT (also called reciprocal response time or response speed in seconds), and
the number of minor lapses, which is the number of stimuli answered with RT
> 500 ms. This methodological approach ensures a thorough examination of
both subjective experiences and objective performance during the simulated
driving task, all within the predefined scope of this study. It is important to
note that this study presents solely the KSS, SSS and PVT results to validate
the experimental task to induce lack of vigilance. Neurophysiological data
will be analysed in future work.

Experimental Procedure

Participants were provided with a comprehensive briefing outlining the
study’s objectives, the driving task and the utilized measures. Subsequently,
they were guided through the placement of the chest strap, the EEG head-
set, the EDA wristband, along with a calibration of the eye tracker, ensuring
precise positioning. Following equipment preparation, participants under-
went a pre-driving assessment, comprising the KSS, SSS, and PVT to establish
performance baselines. A 10-minute practice driving session familiarized
participants with the task and the controls. The main driving task was con-
ducted in BeamNG.tech (BeamNG, 2021), a physics-based driving simulator,
featuring a highway with sunny weather conditions, low traffic, and no
pedestrians—only cars. Participants navigated the highway for 60 minutes
with an exterior field camera view and a speedometer (see Figure 2) while
adhering to a speed limit of approximately 80km/h.

Several checkpoints were added on the road serving as visual cues, ensur-
ing adherence to the designated route. The highway included two different
biomes: a green area and a desert area, both consisting of empty fields of grass
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and sand as shown in Figure 2 (a) and (b), respectively. The scenario begins in
a green biome, transitions into the desert and concludes in the green biome.
The intentionally chosen low traffic conditions and limited buildings aimed
to create a monotonous driving environment. The desert biome, character-
ized by its monotonous scenery, was selected to have the longest duration.
A secondary visual attention task involving billboards was implemented to
assess vigilance during the driving task. Twenty billboards were dispersed
evenly on the path and contained three letters, each enclosed by a shape (see
Figure 2 (c)). Participants were instructed to press the R2 button on the steer-
ing wheel when the billboard showed the letter “A”inside the star symbol. Ten
of the 20 billboards contained the target and their order of appearance were
randomized between participants. Additionally, participants indicated their
moments of perceived loss of vigilance, boredom, or drowsiness by pressing
the vigilance marker L2 button on the steering wheel (see Figure 2 (d)). After
60 minutes, the driving task was ended and participants responded to the
PVT, KSS and SSS for the post-drive assessment.

Figure 2: Visualization of (a) green biome; (b) desert biome; (c) billboard stimuli; and
(d) marker buttons.

RESULTS

The collected data related to vigilance measures, including KSS, SSS, and PVT,
was analysed utilizing various statistical methods to assess the impact of the
test setup on vigilance decline. The methods employed included descriptive
statistics, paired t-tests, and correlation coefficients.

Data from the 32 participants was analyzed except for the PVT perfor-
mance which, due to data loss, comprised only 31 participants. The analysis
performed on the self-reports of decline in vigilance revealed that, on aver-
age, the first marker press occurred at 18 minutes, suggesting an initial lapse
in vigilance within the first half-hour of driving. Notably, over 70% of these
first marker presses were clustered during the segment corresponding to the
desert biome.
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The analysis of subjective sleepiness scores and PVT performance for
baseline and post-driving is summarized in Figure 3 and Table 1. The table
presents key measures such as mean, standard deviation, 95% confidence
interval (CI) lower and upper limits, p-values, Pearson correlation coefficient
(r) and Cohen’s d.

Subjective Sleepiness Assessment

Participants exhibited a baseline mean KSS level of 4.3 (SD= 1.8), labelled as
“rather alert”. The post-driving mean score was of 6.1 (SD = 1.9), labelled
as “some signs of sleepiness”. This difference was significant t(31) = 5.4,
p <0.0001. Cohen’s d = 0.98, raising a large effect size. The correlation coef-
ficient (r= 0.47) indicated a moderately strong positive relationship between
baseline and post-driving sleepiness scores.

Similar to the KSS response, the participants reported a baseline mean SSS
of 2.7 (SD = 1.1), described as “able to concentrate”, initially suggesting
relatively low sleepiness levels. Post-driving, the mean SSS score increased to
4.1 (SD = 1.3), described as “somewhat foggy, let down”. The paired t-test
demonstrated a significant difference in subjective sleepiness levels before and
after the simulated driving task t(31)= 7.9, p <0.0001, Cohen’s d= 1.15. The
substantial effect size emphasized the meaningful increase in perceived sleepi-
ness after the simulated driving task. The correlation coefficient (r = 0.67)
suggested a moderately strong positive relationship between baseline and
post-driving sleepiness scores.

Figure 3: Comparative analysis of sleepiness score and psychomotor performance
for baseline and post-driving. Confidence intervals represent the standard deviation.
n.s. = non-significant, ***p <0.001, ****p <0.0001.
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PVT

Participants demonstrated mean reaction time of 258 ms (SD = 29) at base-
line, increasing to 279ms (SD= 42) post-drive. The difference was significant
t(30) = 5.0, p <0.0001 with a medium effect size, Cohen’s d = 0.61, and
showed a strong positive relationship between baseline and post-driving
(r = 0.85). The median reaction time was 246 ms (SD = 28) at baseline and
increased to 262ms (SD= 34) post-drive. The difference observed was signif-
icant t(30) = 4.2, p <0.001 with a medium effect size (d = 0.50) and depicted
a positive correlation between baseline and post-driving with r = 0.79. The
analysis of PVT speed revealed a baseline mean speed of 4.1 s-1 (SD = 0.4)
that decreased to 3.8 s-1 (SD = 0.4) post-driving. The difference was signifi-
cant, t(30) = 4.8, p <0.0001 with effect size d = 0.56, along with a positive
correlation between baseline and post-driving (r = 0.80). While the mean
number of minor lapses (i.e., RT > 500ms) increased from 1.1 (SD= 1.4) dur-
ing baseline to 2.0 (SD = 3.4) post-driving, the difference was not significant
t(30) = 1.8, p > .05 with a small effect size (d = 0.36). The correlation coef-
ficient (r = 0.54) indicates a moderate positive relationship between baseline
and post-driving minor lapses.

Table 1. Paired t-test results for KSS, SSS, and PVT measures.

Measure Mean (std) 95% CI t r d

KSS Baseline 4.3 (1.8) [3.7 – 5.0] 5.4 **** 0.47 0.98
Post-drive 6.1 (1.9) [5.4 – 6.8]

SSS Baseline 2.7 (1.1) [2.1 – 3.1] 7.9 **** 0.67 1.15
Post-drive 4.1 (1.3) [3.6 – 4.6]

PVT mean Baseline 258 (29) [247 – 268] 5.0 **** 0.85 0.61
Post-drive 279 (42) [263 – 294]

PVT median Baseline 246 (28) [236 – 257] 4.2 *** 0.79 0.50
Post-drive 262 (34) [249 – 274]

PVT speed Baseline 4.1 (0.4) [3.9 – 4.2] 4.8 **** 0.80 0.56
Post-drive 3.8 (0.4) [3.7 – 4.0]

PVT minor lapses Baseline 1.1 (1.4) [0.5 – 1.6] 1.8 n.s. 0.54 0.36
Post-drive 2.0 (3.4) [0.7 - 3.3]

n.s. non-significant ***p <0.001 ****p <0.0001

DISCUSSION

The study highlighted an early onset of vigilance lapses, with participants
reporting the first lapse within the initial 18 minutes of driving. These
lapses were predominantly clustered in the desert biome segment. This points
to a notable decline in vigilance during the early driving phase under the
developed driving environment. Moreover, these lapses suggested a poten-
tial linkage between the driving environmental conditions and the lapses in
attention. Subjective sleepiness assessment, as indicated by increased KSS and
SSS scores post-driving compared to the baseline, emphasized the profound
impact of the driving task (monotonous nature, environment, duration, etc.)
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on the vigilance level. The paired t-test demonstrated significant differences
that led to strengthening the impact of the driving task in declining the vigi-
lance. In addition, the substantial effect size (i.e., Cohen’s d) underscored the
practical significance of driving tasks in altering subjective sleepiness. The
increase in mean and median PVT reaction times post-driving, supported
by the paired t-test, drew attention to the impact of driving task on the
psychomotor performance among the participants.

Additionally, the decrease in PVT speed, while statistically significant
(p <.0001) exhibited a complex interplay of driving-related factors on influ-
encing the driving behaviour. It means that there was a significant decrease
in response to the PVT stimuli post driving among participants. The Cohen’s
d for PVT speed showed a noticeable drop, indicating potential adap-
tive changes in driving behavior. This emphasizes a clear deterioration in
psychomotor vigilance following the driving task.

The simulation environment that we validated in this study can serve other
researchers in their work on vigilance. Methods to induce hypovigilance in
previous work involved sleep deprivation (Ahn et al., 2016; Nguyen et al.,
2017), prolonged task engagement from 2h to 4h (Naeeri et al., 2019), vary-
ing workload demands (Gateau et al., 2015) or monotonous driving (Li et al.,
2008). In this study, we showed that a 1-h monotonous drive using a low-
cost driving simulator was sufficient to induce a notable lack of vigilance
within the first 30 minutes. This setup offered a realistic microworld simu-
lation for participants to remain engaged in the task while controlling the
environmental factors to induce lack of vigilance – alternating between green
and desert biomes – and having a secondary detection task embedded as an
accurate world element; see (Cooke and Shope, 2004) for a discussion on the
advantages of realistic simulations and microworlds.

The findings of this study serve as an advancement in the initial stage
towards developing a neuroadaptive system for detecting vigilance decline
to augment driving safety. This research effectively substantiates the efficacy
of the designed driving task system in inducing vigilance decline, thus estab-
lishing a foundational understanding of its operational effectiveness. This
observation is pivotal for the progression of the neuroadaptive system
development, ensuring that the driving task is a reliable inducer of vigilance
decline. It is acknowledged that a comprehensive understanding of vigilance
necessitates a multimodal approach considering neurophysiological mea-
sures along with subjective and behavioral measures (cf. Marois et al., 2023).
While this study successfully establishes the effectiveness of driving task
in inducing vigilance decline, the next phases of research will focus on
analysing the various neurophysiological measures collected. This includes
utilizing experimental data related to EEG signals, EDA, oculometry, ECG,
and facial feature recognition under similar driving conditions. The ulti-
mate goal is to use the data to develop prediction models. These models
will play a pivotal role in accurately detecting vigilance decline. Such neu-
rophysiological prediction models exist, as raised in Marois et al. (2023).
Most of them have been specifically developed for driving use cases (see,
e.g., Awais et al., 2017; Guo et al., 2016; Leng et al., 2015; Li et al.,
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2015; Salvati et al., 2021). Yet, most of these models rely on a set of intru-
sive sensors, including, for instance, ECG, EEG and EDA. Such measures
impose one to wear electrodes, garments or other types of apparel that
directly collect signal from the head or the body, which can also be prone
to movement artifacts, thus reducing their potential for real-life implemen-
tations. Given the variety in neurophysiological markers collected in this
study, further work will aim at producing prediction models from all the
fused neurophysiological signals, but also to develop models based solely
on the nonintrusive sensors used through the extraction of several features
related to hypovigilance. Intrusive markers, along with behavioral markers of
hypovigilance such as those analyzed in the current study, will serve as ground
truth measures to improve the validity and granularity of the vigilance state
predictions for real-time applications (e.g., using the Karolinsa Drowsiness
Test classifications from the EEG signal, Akerstedt et al., 2010). Such model
could then ultimately be integrated into low-intrusion closed-loop attention
management systems, deployable in several contexts and capable of provid-
ing countermeasures when periods of hypovigilance are detected (see, e.g.,
St. John et al., 2006).

This study is subject to the following limitations. First, participants were
younger, with the oldest participant being at most 35 years old. Replicating
the testbed with a larger and more diverse population could provide a more
comprehensive understanding of vigilance decline induction. Second, we con-
ducted the test in the morning in a controlled environment. Investigating the
temporal aspects of driving, particularly the effect of driving in the morn-
ing versus the afternoon, may provide better insights into vigilance decline
patterns.

CONCLUSION

Our study successfully tested and confirmed the simulated driving testbed’s
ability to induce vigilance decline. Through comprehensive subjective assess-
ments and psychomotor performance metrics, we observed a significant
reduction in vigilance level after the driving task. The testbed promptly trig-
gered vigilance lapses within the first 18 minutes, particularly in the desert
biome segment. This validation of testbed’s efficacy holds practical impor-
tance by paving the way for future investigations into neuroadaptive control
strategies. These insights offer promising avenues for refining our under-
standing and application of vigilance management, marking a significant
step forward in developing a non-invasive intelligent neuroadaptive system
capable of detecting vigilance states in extreme and challenging operational
situations.
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