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ABSTRACT

We simulate social networks, where undirected edges are mutual friendships, to find
the effect of their structure on the aptness of persons for performing a given job. A
job J requires a given set of tasks, and each node (person) n can perform a given
set of tasks. If the ego network EG of n cannot perform all tasks for J, then n fails
on J. Otherwise, n’s score is computed as a weighted sum of measures of centrality,
embeddedness (core number), attribute and degree assortativity of the nodes in EG,
the degrees of these nodes, and the performance of these nodes on accuracy, speed,
and reliability. Experiments were run on random networks from three models across
values for an independent variable controlling the number of edges: Erdős-Renyi (ER),
Barabasi-Albert (BA), and Watts-Strogatz (WS). Average values for maximum, average,
and minimum node scores for each value of the variable for each model were plot-
ted. For all models, the core-number measure largely accounts for the curves’ shapes.
Our core-number measure averages over node n’s core number and the averages of
n’s neighbors’ numbers and the smallest of these. For ER networks, scores increase
with increasing number of edges as nodes become more embedded. For BA and WS
networks, there is an initial decrease, conjectured to depend on a person collaborat-
ing with many little-embedded helpers, untested and perhaps not well trusted. Our
approach for members’ aptness for jobs preserves the security of a secure community,
keeping the calculations within the community.
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INTRODUCTION

We model social networks where the nodes are individuals and the (undi-
rected) edges are mutual friendships explicitly declared between two equal
partners. (We use “person” and “node” interchangeably.) Such a network
supports collaborative efforts in a particular domain in which the members
share competences. Each person is intimately connected with some others
who themselves have this connection with others and so on. In our simula-
tion experiments, each job requires a certain subset of tasks from a set T of
tasks; each person can perform a certain subset of T. A person n and their
neighbors comprise the ego network of n, EG. If EG cannot perform all the
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tasks required by a given job J, then n fails on J. If n does not fail on J, then we
compute a score in [0.0, 1.0] for n. This allows the individuals to be ranked on
how well suited they are for J. The score for n combines normalized measures
of centrality, embeddedness (core number), similarity of attribute values and
of degrees of the nodes in EG (assortativity), the degrees of the nodes in EG,
and the performance of the members of EG on accuracy, speed, and reliabil-
ity. (A different set of performance properties could be chosen.) A person’s
overall score is a weighted sum of these measures, weights determined by the
Analytic Hierarchical Process (AHP).

We randomly generated networks from three models, Erdős-Renyi,
Barabasi-Albert, and Watts-Strogatz, and noted the scores for their nodes as
a function of the independent variable governing the number of edges. The
averages of the minimum, maximum, and average of the node scores for sev-
eral networks for each value of the independent were plotted for each of the
three models vs. the respective independent variable; plots were explained
by looking at the measures contributing to the scores as functions of the
independent variable.

Regarding related work, there is literature on selecting a server (and possi-
bly by extension its human owner) for a job that relates to scheduling. Some
(e.g., (Tran, 2019)) does emphasize handling the underlying network. Some
work on multiagent systems is on a similar problem of selecting an agent
for a job, such as (Nyangal, 2016) (where agents are non-human); that work
also uses AHP. In Web-based collaboration, there is the notion of helpfulness-
based reputation (HBR). De Meo et al. (De Meo, 2017) contrast HBR with
centrality-based reputation (CBR), where the most reputable users occupy
the most central position in the trust network. They suggest that CBR scores
are good predictors of HBR scores.

We have used the concepts presented here with the WebID protocol to
produce a framework for determining how apt the nodes are in a simu-
lated secure community of servers (Eady, 2023). Nodes are thought of as
server-human owner pairs. The WebID protocol (Sambra, 2014) is a secure
authentication protocol where a WebID is an URI dereferencing to a user’s
RDF profile with foaf:knows triples (reciprocated in our application) linking
the subject to a friend. Combining these triples from all in the community
describes a secure social network. The work reported in (Eady, 2023) used
only Erdős-Renyi models. Here we also consider Barabasi-Albert and Watts-
Strogatz models, and, unlike in (Eady, 2023), we are concerned with what
features of social networks are captured by these models.

Our approach to finding members apt for various jobs preserves the
security of a secure community by keeping the calculations within the com-
munity no matter what technology is used to establish that security. And
our approach accommodates a range of human factors in the form of
performance properties.

In the remainder of this paper, the next section explains the measures of a
person’s aptness for a job and the AHP weights used to combine them. The
third section presents the three random network models used in the exper-
iments. The next section presents these experiments and their results and
interpretation, and the last concludes and suggests future work.
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MEASURES FOR A NODE’S SCORE AND THEIR COMBINATION VIA
AHP-DETERMINED WEIGHTS

The following are the measures that contribute to the score for a node n in a
networkG. All values are normalized to be in [0.0, 1.0]. We justify each factor
as a contributor to the overall score. They are computed only for a person n
who, with their ego network, EG, can handle all the tasks in the job. We also
derive the weights for combining these measures using the analytic hierarchy
process (AHP).

Centrality: Centrality is a measure of a node’s position in a network. Of
the several centrality measures, we use the geometric mean of the eigenvector
and betweenness centralities of a node. To find the eigenvector centralities of
the nodes in a network G (Bonacich, 2001), form the adjacency matrix A of
G then find the principal eigenvector x of A; xm then denotes the eigenvector
centrality of node m. Eigenvector centrality is a measure of how influen-
tial a node is, intuitively addressing “how many people you know” and
“whom you know”. We normalize x by dividing by the sum of its elements
so the sum of the elements becomes 1.0; betweenness centrality measures are
similarly normalized. The betweenness centrality of a node n for a given net-
work G is

∑
(s6=n6=t)

σst(n)
σst

where σ st is the number of shortest paths between
nodes s and t and σ st(n) is the total number of such paths through n. This
measures the extent to which n can regulate the interaction or flow of infor-
mation among other nodes. To combine these measures, their geometric mean
(Sýkora, 2009) is used. Where xn and Bn are normalized eigenvector and
betweenness centrality values of node n, respectively, their geometric mean
is
√
xnBn; again, these values are normalized. This is used since a low value

for one measure is not linearly compensate for by a higher value in another,
and a small decline in one dimension has the same impact as a small decline
in another (United Nations, 2019). Given that the nodes of G are ranked on
this mean, the measure used is the average of (1) the relative rank of node n
in G and (2) the average of the relative ranks in G of the nodes in EG. The
popularity and influence of n makes resources available, and the popularity
and influence of n’s neighbors allow them to contribute to n’s aptness for the
task.

Core number: For how a network may divide into communities, we may
consider a clique, a group of nodes each sharing an edge with every other.
This imposes a very strict condition. Something more open-ended is the k-
core, a connected set of nodes each joined to at least k of the others. The
maximum value of k for the k-cores of a network is its k-core (or simply
core) number. The measure we use is the average of (1) n’s core number, (2)
the average of the core numbers of the nodes EG, and (3) the minimum core
number of any node in EG. If n and their neighbors are well embedded in the
network, they have ready access to assistance, which might be jeopardized
by an unembedded neighbor.

Average performance: This is the average of the averages of the perfor-
mance attributes (speed, accuracy, and reliability) of the nodes in EG. A high
value confers an obvious advantage.
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Minimum performance: This is the geometric mean of the minimums of
the (performance) attributes of the nodes in EG. When people collaborate,
minimum values of performance attributes are performance bottlenecks.

Assortativity: If nodes sharing an edge tend to have the same value for
an attribute, the network exhibits asssortative mixing, a.k.a. homophily
(“birds of a feather flock together”). If they tend to have different values
for the attribute, then it exhibits disassortative mixing. We are interested
in the case where the attribute has real-number values and the case where
the characteristic is the degree of the nodes. In fact, our application consid-
ers assortativity on three performance attributes. Our attribute assortativity
measure is the average of the assortativity coefficients for EG over the per-
formance attributes mapped from [-1.0, 1.0] to [0.0, 1.0]. When those in
EG have similar performance values, no one’s work is wasted by others.
Our degree assortativity measure is the average of (1) the degree assortativity
coefficient of EG as embedded in G and (2) as removed from the rest of G,
mapped linearly from [-1.0, 1.0] to [0.0, 1.0]. When a node and its neighbors
have similar degrees, no one’s connections are wasted by another’s isolation,
within or beyond the group.

Degree: This is the average of (1) the average degree of the nodes in EG and
(2) the normalized minimum degree of the nodes in EG. More connections
provide access to more resources, and a node in EG whose degree is low
might be detrimental to collaborative effort.

Weights determined by AHP (Saaty, 1988) are used to combine our mea-
sures to get a single score for each person. The weights for the criteria
are computed by first developing the square pairwise comparison matrix C
with Cmn (an integer 1–9 or its reciprocal) denoting the importance of the
mth criterion relative to the nth criterion; it is an inverse symmetric matrix
(Cmn×Cnm = 1). The weights for the criteria are the corresponding entries of
the principal eigenvector of C, normalized so that its elements sum to 1.0. The
result of applying AHP for our case is shown in Table 1, and our comparison
matrix passes the standard consistency check.

Table 1. Weights for the features as determined by AHP.

Criterion Value

Centrality 0.35
Core number 0.23
Average performance 0.15
Minimum performance 0.09
Attribute assortativity 0.07
Degree 0.06
Degree assortativity 0.04

Random Network Models

We test our model on randomly generated networks that we interpret as
models of friendship networks with undirected friendship links. Regarding
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friendship relations as symmetric, De Meo et al. (De Meo, 2017) found that
trust networks had large numbers of reciprocated trust links, suggesting an
underlying symmetric friendship relation. We image that declaring friendship
is a sort of handshake between two equal partners, naturally interpreted as
undirected. Such things occur in collaborative efforts and support networks,
and the explicit reciprocal friendship provides an undergirding for secure
activity. The three models for generating random networks used here are
Erdős-Renyi (ER), Barabasi-Albert (BA), and Watts Strogatz (WS) networks.

The earliest model for generating random networks is ER model, intro-
duced by Erdős and Renyi in 1959 (Erdős, 1959). In the common version
of this model, given n nodes, each possible edge has a fixed probability p of
being present, independently of the other edges. There are thus two parame-
ters to specify, n and p; for each pair of values, there is a family of networks.
One interesting property of social networks is their degree distribution: the
number of nodes of the various degrees plotted as a graph number-of-nodes
vs. degree. The degree distribution of ER graphs is Poisson (so the number of
nodes decays exponentially with increasing degree), so they do not account
for the formation of hubs (nodes of high degree). In this respect, they diverge
from many social networks, where hubs (such as popular web sites, where
edges are in-links) are important. Another property on which many social
networks disagree with ER networks is that ER networks tend not to gener-
ate triadic closures or triads (where neighbors of a node are neighbors of each
other). Instead, they have a low clustering coefficient (ratio of the number of
closed triplets—where neighbors of a node are neighbors of each other—to
the number of all triples, closed and open).

The BA model became popular for describing network formation based
on popularity, as is the case with the Web, where hubs tend to form (Easley,
2010). It was found that the fraction of Web pages that have k in-links is
approximately proportional to 1/kc for some constant c (often slightly larger
than 2) (Broder, 2000), which decreases much more slowly than a Poisson
distribution as k increases. A function that decrease as k to some fixed power
is a power law. The BA model (unlike the ER and WS models) exhibits power
laws. Power laws result in cases where “the rich get richer” and appear in
measures of popularity in many domains besides the link structure of the
Web, such as the fraction of books bought by k people (Albert, 2002). The BA
model incorporates two important concepts: growth (the number of nodes
increases over time) and preferential attachment. The algorithm has (besides
the final number of nodes) one parameter, m. The network is initialized with
at least m nodes. At each step, a node is added and m existing nodes are
selected with probability proportional to their degree as its neighbors (i.e.,
they are preferentially attached).

The small-world phenomenon is the idea that the world looks small when
you note how short the path of friends is from you to anyone, an idea brought
to prominence by Milgram’s experiment (Milgram, 1967). The WS model
(Watts, 1998) produces graphs with small-world properties and was designed
as the simplest possible model that corrects the lack of clustering seen in
ER networks, yet it retains the short average path lengths of that model.
It interpolates between an ER-like randomized network and a regular ring
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lattice (nodes can be arranged in a circle with each node connected to the
nearest neighbors on the circle). The construction begins with a ring lattice
each node of which has K neighbors, K/2 on each side. Then each edge (u,
v) is “rewired” with probability p: replaced with a new edge (u, w) with
uniformly random choice of existing node w. The lattice structure results in
high clustering while the rewiring produces shortcuts. Watts and Strogatz
(Watts, 1998) argued that such a model follows from a combination of two
basic notions about social networks: homophily (see “assortativity” above),
result in many triads, and weak ties. Granovetter (Granovetter, 1974) found
that many of his interviewees heard of their current jobs through contacts
often described as acquaintances rather than close friends: “the strength of
weak ties.” Limited randomness in the form of long-range weak ties suffices
to make the world small (Easly, 2010). The major limitation of the WS model
is that it produces an unrealistic degree distribution: a pronounced peak at K.
(In contrast, the BA model fails to produce high levels of clustering but does
result in hubs.)

EXPERIMENTS

We randomly generated networks from the three models, ER, BA, and SW,
and noted the behavior of the scores for their nodes as the independent vari-
able governing the number of edges for each increased; the number of nodes
throughout is 30. For each, a range of values of the independent variable was
used in generating the networks. For each value of the variable, 12 networks
were generated, and the average of the minimum, maximum, and average of
the node scores were plotted. These plots are explained by the behavior of
the measures as the independent variable increases. Different random values
in a uniform distribution over [0.0, 1.0) were generated for each of the three
performance attributes for all 30 nodes in each network. Each node in each
network was given as the value of its tasks attribute a list of tasks of random
length, between 2 and 5, chosen at random (without replacement) from a list
of nine made-up tasks, ‘A’, ‘B’, …, ‘I’. Each run assumed a job with three
tasks, ‘B’, ‘D’, and ‘F’. We noted the number of failures (where a person’s ego
network cannot handle all the tasks required of the job) for each value of the
independent variable of the model in question. Results are presented for ER,
BA, and WS networks, in that order.

Using NetworkX’s erdos_renyi_graph (N, p) function, we randomly
generated ER networks with 25 equally-spaced values of p from 0.2 to 1.0.
Regarding the nodes whose ego networks failed to cover all the tasks required
for the job, for p values near 0.1, these were nearly half of all nodes. At
p = 0.2, nearly 10% of the nodes fail. This drops off quickly as, just beyond
p = 0.4, essentially no nodes fail. We expected that, as p increases, fewer
nodes would fail since in general, as p increases, the nodes have more neigh-
bors, so they and their neighbors can then handle more tasks. The quick
drop just before p = 0.4 and the fact that nearly no nodes thereafter fail
were not anticipated. Similar behavior in the number of failures is seen with
BA and WS networks in terms of their own independent variables, and the
explanation is the same.
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Figure 1 shows the averages (over 12 runs) of the minimum, average, and
maximum scores versus the 25 values of p, from 0.2 to 1.0. We expect all
three measures to increase since, as p increases, each node has access to more
resources. The slope of the average vs. p line is 17% greater than that of
the maximum vs. p line, and the slope of the minimum vs. p line is 24%
greater than that of the average vs. p line. This closing of the gaps as p
increases happens because, as connections get denser, fewer nodes are sig-
nificantly impeded by lack of access to resources. Regarding the rankings of
the nodes, the two centrality measures give somewhat different rankings, and
their geometric mean gives yet a third order, but the rankings are reasonably
similar.

Figure 1: Score vs. p.

Looking at the measures contributing to the weighted averages forming
the node scores, the measure with the largest weight, centrality, changed little
with increasing p. The measure with the next greatest weight, core number,
showed a significant increase with increasing p: as the probability of an edge
between any two nodes increases, typical nodes become more embedded in
the network and are less likely to be connected with not very embedded nodes.
The measure with the third highest weight, average performance, changes
little with p. The remaining measures have small impacts and only two vary
significantly with p: minimum performance decreases with p (as p increases,
the typical ego network has more nodes and so more values that could be
small) and degree increases significantly with p (as more edges are formed
overall but the number of nodes is fixed).

Using NetworkX’s barabasi_albert_graph (N, m) function, we ran-
domly generated 30-node BA networks with, as values of m (the number
of edges connecting a new node to existing nodes), integers from 2 to 15.
Figure 2 shows the averages (over 12 runs) of the minimum, average, and
maximum scores versus the 14 values of m, from 2 to 15. The maximum
scores are slowly decreasing nearly linearly in m. The curve of the average
scorers is mildly concave upwards with a minimum near m = 7, and the
curve of the minimum scores is roughly concave upwards (with a minimum
at m = 8), with an outlier on the large side at m = 6.
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Looking again at the measures contributing to the weighted averages form-
ing the node scores, again the measure with the largest weight, centrality,
changed little with increasing m. The curve for the measure with the next
greatest weight, core number, is concave upward and apparently largely
accounts for the shapes of the average and minimum curves. Since the num-
ber of edges in the network increases as m increases, we might expect nodes
to become more embedded in the network (i.e., come to have a higher core-
number measure) as m increases. Why this measure should decrease initially
is not so clear, but a conjecture is that it has to do with the formation of hubs.
Our core-number measure averages over not just the core number of a node
n but also the averages of n’s neighbors’ core numbers and the smallest of
these numbers. As a hub n forms, it connects to less embedded nodes. Initially,
these neighbors will not be well embedded, bringing down the measure for
n. The next highest weighted measure, average performance, is flat, and the
next, minimum performance, generally decreases with increasing m, perhaps
accounting for the slightly negative slope of the maximum curve. (We expect
minimum performance to decrease as the number of nodes in an ego graph
typically increases with m, giving a larger population for the minimum.) The
remaining measures (attribute assortativity, degree, and degree assortativity)
increase with increasing m but evidently do not impact the maximum curve
enough to overcome its slight decrease. We expect degree to increase with
increasing m as that results in more edges for the fixed number of nodes.
And we conjecture that the reason the assortativity measures increase with
degree is that a larger number of nodes in an ego graph makes it less likely
that any node stands out in attribute values or degree.

Figure 2: Score vs. m.

We used NetworkX’s watts_strogatz_graph (N, K, p) function to
randomly generate WS networks. Here K is the number of nearest neighbors
to which each node is initially joined in a ring topology (half on one side, half
on the other), and p is the probability that each edge is “rewired” (i.e., have a
new vertex randomly chosen as its other endpoint). We fixed p at 0.3 as this
rewired a significant number of edges yet maintained much of the ring. The
values of K were even integers from 2 to 16.
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Figure 3 shows the averages (over 12 runs) of the minimum, average, and
maximum scores versus the eight values of K. Measures of centrality involved
only betweenness centrality as calculations of eigenvector centrality on our
WS networks generally failed to converge. The curve for average scores is
similar to that for the BA networks: it is concave upward, here with a mini-
mum at K= 10. The curve for the minimum scores again is somewhat similar
to that for the BA networks: it is roughly concave upward, here with a min-
imum at K = 8. The curve for the maximum is only roughly linear and is
roughly flat, lacking the slightly negative slope of the maximum BA curve.

Figure 3: Score vs. K.

Regarding the measures contributing to the weighted averages forming the
node scores, again, the centrality measure is basically flat, and most of the
concave-upward shape of the average and minimum curves can be attributed
to the core-number measure. Regarding the latter measure, similar to the BA
case, the number of edges increases with K, so we expect nodes to become
more embedded as K increases, and what is hard to explain is why this mea-
sure decreases initially. The conjecture here is that, when K is small, edges
tend to connect to nodes of low degree, and adding a few more edges just
connects a node to more low-degree nodes. When the small world starts
to fill up, however, nodes become more embedded in the network. Average
performance, as with the other network families, is flat. Similar to the BA
case, minimum performance decreases and attribute assortativity, degree, and
degree assortativity increase with increasing K; explanations here are as with
the BA case.

CONCLUSION AND FUTURE WORK

We model social networks where the nodes are individuals and the (undi-
rected) edges are mutual friendships explicitly declared between two equal
partners. They are simulated to find the effect of their structure on the aptness
of each person in the network for performing (with help from their friends)
a particular job. We compute a score in [0.0, 1.0] for a node with ego net-
work EG as a weighted sum (weights per AHP) of measures of its centrality,
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embeddedness (core number), similarity of the attribute values and degrees
of the nodes in EG (assortativity), the degrees of the nodes in EG, and the
performance of the members of EG on the properties accuracy, speed, and
reliability. Experiments were run on randomly generated networks from three
models across a range of values for an independent variable controlling the
number of edges: Erdős-Renyi (ER) with variable p (the probability of an
edge between any pair of nodes), Barabasi-Albert (BA), with m (the number
of edges connecting a new node to existing nodes), and Watts-Strogatz (WS),
withK (the number of nearest neighbors to which each node is initially joined
in a ring topology). Random values were provided for performance proper-
ties. The tasks each person can handle were randomly selected from a set of
nine tasks; a test job was defined with three of these tasks. For each model,
for each value of the independent variable, the averages of the maximum,
minimum, and average scores of the nodes in 12 generated networks were
plotted.

For all three models, the measure with the second greatest weight, core
number, largely accounts for the behaviours of the curves. Note that our core-
number measure averages over not just the core number of a node n but also
the averages of n’s neighbors’ core numbers and the smallest of these num-
bers. For the ER model, all scores significantly increased nearly linearly with
increasing p. The core-number measure increases with increasing p because,
with more edges, typical nodes become more embedded in the network and
are less likely to be connected with not very embedded nodes. For the BA
model, the maximum curve had nearly negligible decrease with increasing
m while the average and minimum curves were roughly concave upward.
Regarding the core-number measure, we conjecture that the initial decrease
occurs because, as a hub forms, it connects to less embedded nodes; initially,
these neighbors will not be well embedded, bringing down the core number
measure. Finally, the shapes of the curves for the WS model are roughly as
with the BA model. For why the core-number measure decreases initially, the
conjecture here is that, whenK is small, edges tend to connect to nodes of low
degree, and adding a few more edges just connects a node to more low-degree
nodes. When the small world starts to fill up, however, nodes become more
embedded in the network. Intuitively, we would expect that, as the number
of edges increases, an arbitrary node would become more embedded even at
small values of the independent variable. For both BA and WS networks, the
decreasing value of our core-number measure of a node n for small values
of the independent variable, however, depends critically on n having more
neighbors who are less embedded. In that region, n depends on helpers that
are little embedded. The person ends up collaborating with many others who
are untested and perhaps not well trusted.

In the future, we intend to investigate how scores vary with additional
performance properties, with different distributions of these properties, and
with interactions between these properties and network properties. We shall
also consider measuring different structural features, such as clustering coeffi-
cient and network diameter, but many of these concepts are not independent.
Finally, we shall consider other applications, besides the WebID-based com-
munities mentioned in the introduction, where our approach to finding
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members apt for various jobs preserves the security of a secure community
by keeping the calculations within the community.
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