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ABSTRACT

We develop a measure of trustworthiness for members of a social network that sup-
ports collaborative effort in a domain. Edges represent explicitly declared friendships.
The measure for a person is the geometric mean of their betweenness and eigenvector
centralities in their network. The focus is on ranking people according to these val-
ues, which are normalized. We show the rankings of the people in an Erdés-Renyi (ER)
network according to our measures. In experiments on Barabasi-Albert (BA) and Watts-
Strogatz (WS) as well as ER networks, the average differences between the maximum
and the minimum trustworthiness of the people are plotted against the independent
variable of each model that results in an increasing number of edges. For the ER and
WS networks, this difference decreased significantly and nearly linearly vs. the inde-
pendent variable, but the trustworthiness values increase: it is harder to distinguish
the trustworthy from the not trustworthy when all are pretty trustworthy. For the BA
networks in contrast, this spread decreased to a minimum then increased. It is con-
jectured that, with an increasing number of edges, how embedded hubs are in the
network becomes a dominant factor while non-hubs remain not very embedded. This
measure has been used in defining a protocol for a group using a distributed authen-
tication protocol to decide whether to admit a candidate, an example of how our work
provides a secure way for people to collaborate that exploits human characteristics.

Keywords: Trustworthiness, Social networks, Network analysis, Security

INTRODUCTION

This paper develops a measure of trustworthiness for a social network. In our
networks, nodes represent people, and edges represent friendships explic-
itly declared between two equal partners. Such a network is a structure
that supports collaborative effort in a particular domain where the members
share competences expected in that domain. Such a restriction is required
for trustworthiness to be understood. De Meo et al. (De Meo, 2017) found
that the trust networks they investigated had large numbers of reciprocated
trust links, suggesting an underlying symmetric friendship relation. What is
addressed is, not trust, but trustworthiness, the quality of being worthy of
trust whether one’s colleagues actually have a trust attitude toward one. In
the literature, there are generally two approaches to assigning levels of trust-
worthiness in a social network: in terms of centrality, where the most trusted
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occupy the most central positions in the network, and in terms of local con-
siderations (such as helpfulness of ratings). Research suggests that the former
is predictive of the later (De Meo, 2017), and the notion developed here is
based on centrality.

Our trustworthiness measure for a person is the geometric mean of their
betweenness and eigenvector centralities in their network. In fact, raw values
are not of primary interest. Rather, it is how the people in the network are
ranked according to these values since the main application of this research
is in selecting those who are most or least trustworthy. To that end, we work
with normalized values of the centrality measures and their geometric mean
so that the sum of the values for the people in a network is 1.0. Of interest
as well is the difference between the maximum and the minimum trustwor-
thiness of the people in a social network as (caeteris paribus) the greater this
spread, the clearer the choice between trustworthy and not trustworthy.

We have used the concepts presented here with the WebID protocol to
implement a protocol for vetting a candidate for a WebID group (Kyei, 2023).
The weight an agent has in deciding whether to accept a candidate depends on
their trustworthiness. The WebID protocol (Sambra, 2014) is a secure authen-
tication protocol where a WebID is an HTTP URI that dereferences to a user’s
profile, which contains (among other things) structured data in RDF using the
FOAF (Friend Of A Friend, prefix foaf) ontology; a foaf:knows triple links
the subject to a friend, and we assume such relations are symmetric. Combin-
ing the foaf:knows triples from the profiles of all members in a group results
in a social network supported by the protocol. Other sorts of secure social
networks can be formed in various ways, and security can be enhanced by
exploiting the trustworthiness of the members.

The remainder of this paper is organized as follows. The next section
reviews related work, some on trust in general, more on centrality as a
measure of trustworthiness. Following this, we develop the notion of the
geometric mean of betweenness and eigenvector centrality as a measure of
trustworthiness but also note issues with using betweenness centrality. The
fourth section interprets the results of several experiments run using three
standard models of randomly generated networks. We show the rankings
of the nodes in one network determined by our measure and plot, for each
model, the average size of the spread between the highest and lowest trust val-
ues as a function of the variable controlling the number of edges. The final
section concludes and suggests future work.

RELATED WORK

In computer science, trust has several definitions depending on the context.
Lewis et al. (Lewis, 1985) provide a psychological model and outline the pro-
cess of trust violation and repair. Grandison and Sloman (Grandison, 2003)
define trust as the quantified belief by the trustor in the competence, hon-
esty, security, and dependability of a trustee in a specific context. Trust could
also be defined as the connection between two parties, where one (trustor)
will rely on the (expected) actions by the other (trustee) (Airehrour, 2016).
According to Golbeck (Golbeck, 2005), “Trust in a person is a commitment
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to an action based on a belief that the future actions of that person will lead
to good outcome”. Trustworthiness is strongly connected to credibility of a
network and control of network resources.

We represent symmetric declared friendship relations in a social network
with an undirected graph composed of nodes that represent individuals and
edges that represent these relations. We use the geometric mean of eigenvector
centrality and betweenness as a measure of trustworthiness. These measures
consider the node’s context within the entire network, unlike the in-degree
centrality used in (Wang, 2013). Zahi and Hasson (Zahi, 2020) present a
method for Trust Value Based on Interaction and Recommendations using
Centrality Method (TVIRCM), which provides a measure for the trust value
of a node in a social network using centrality measures and recommenda-
tion calculations. They use degree, closeness, betweenness and eigenvector
centrality in calculating Direct Trust (DT) as a sum of weighted values and
calculate indirect trust (IT) using the recommendation of neighbouring nodes;
one’s overall trustworthiness is the sum of one’s DT and IT. Ramya and col-
leagues (Ramya, 2013) describe a method for finding a user’s “influentialty”
in a network using betweenness centrality while removing distrust edges in
the network. They then use a graph search algorithm to find the shortest
trusted paths; users on such paths are deemed trustworthy. De Meo and col-
leges (De Meo, 2017) note that web platforms generally rate users using two
measures, Helpfulness Based Reputation (HBR, based on how other users
rate the helpfulness one’s reviews) and Centrality Based Reputation (CBR,
based on the users connectedness or centrality in the network). CBR has a
benefit of being easily calculable, while calculating HBR is more difficult.
The authors show, using real-life datasets, that CBR scores accurately predict
HBR. See the next section for more background.

TRUSTWORTHINESS VALUES BASED ON NETWORK CENTRALITY

We develop a notion of trustworthiness based on centrality measures since
those influential in a social network and in a position to control network
traffic are generally considered trustworthy. Our measure of trustworthiness
meets these intuitions. In assigning levels of trustworthiness in a social net-
work, De Meo et al. (De Meo, 2017) consider the usual centrality measures:
degree centrality, closeness centrality, betweenness centrality, eigenvector
centrality, and page-rank. They found eigenvector centrality the most help-
ful measure in predicting a local reputation/trust measure based on ratings.
The closeness centrality of node 7 in graph G is the multiplicative inverse
of the sum of the lengths of the shortest paths between 7 and all other
nodes in G (Bavelas, 1948); we rule this out for our measure since it
does not reflect the structure of the network. Page-rank is very similar to
eigenvector centrality, so we skip it. Besides eigenvector centrality, we also
consider betweenness centrality, which (see below) has intuitive appeal. A
notion that is a restricted version of eigenvector centrality is that of Eigen-
trust (Kamvar, 2003), designed for peer-to-peer networks and assuming trust
scores are transitive. Element #; of trust matrix T is defined in terms of the
number of i’s downloads from j of authentic vs. fake files; #’s reputation is
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the i component of the leading eigenvector of T. This notion, however, is
too restricted for us. Our concepts also apply to technological systems sup-
porting the friendship relations assumed. In particularly, we have applied this
analysis to communities of servers with RDF profile documents where edges
are reciprocal foaf:knows triples.

In this section, betweenness centrality and eigenvector centrality are
reviewed, and we argue that the two measures together meet the intuitive
conditions. See (Newman, 2018) for a general presentation of centrality.) We
then present the notion of the geometric mean of the two measures and argue
that it is the appropriate way to combine the two measures for a measure of
the centrality of a node in a social network meeting our expectations. Finally,
we look at some possible problems with betweenness centrality as a measure
of trustworthiness.

The betweenness centrality of a node 7 for a given graph or network G is

ast(n)

defined as Z(S Lkt o (Freeman, 1977). Here o  is the number of shortest

paths between s and t and o (#) is the total number of shortest paths between
s and t passing through 7. The betweenness centrality of a node measures the
extent to which it can regulate the interaction or flow of information among
other nodes in the network. A node with high betweenness centrality acts as
a gatekeeper among the nodes. High betweenness centrality indicates high
importance. A highly important person can reach out most easily to others
and is more effective in influencing network-based activity, and thus would
be considered highly trustworthy.

To find the eigenvector centralities of the nodes in a network G with N
nodes, we form the adjacency matrix of G,an N x N matrix A = (a,,,) where
amn = 1 if node m is connected to node # and 0 otherwise. Where x denotes
the principal eigenvector of A, x,, denotes the eigenvector centrality of node
m, the value indexed by m in x. This addresses the qualitative nature of the
connections of the nodes in a network by finding how much influence each
node has in the network based on the level of influence of the nodes to which
it is connected. To have a high eigenvector centrality value, a node must have
connections with other influential nodes in the network. Intuitively, eigen-
vector centrality is a measure of how influential a person is. It considers two
features of a social network: “how many people you know” and “whom you
know”. It too, then, provides a reasonable measure of trustworthiness.

We combine our two centrality measures for node 7 to get a measure of
the extent to which a node is determined to have a position in the social
network that indicates that they are trustworthy. Our centrality measures
gauge how important 7 is regarding regulation of efficient network traffic
(betweenness centrality) and how influential 7 is (eigenvector centrality). To
combine these measures, their geometric mean is used. Where x,, and B,, rep-
resent normalized eigenvector and betweenness centrality values of node 7,
respectively, we define their geometric mean as G (n) = +/x,B,,. This mean
is concave and symmetric. The main reason we use this mean for combin-
ing centrality measures is the same reason the United Nations Development
Programme switched to geometric mean for computing the Human Develop-
ment Index (HDI) (United Nations, 2019). To wit, with the geometric mean,
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“a low achievement in one dimension is not linearly compensated for by a
higher achievement in another dimension.” It “reduces the level of substi-
tutability between dimensions” while ensuring that a small decline in one
measure has the same impact as a small decline in another. “Thus, as a basis
for comparisons of achievements, this method is also more respectful of the
intrinsic differences across the dimensions than a simple average”.
Betweenness centrality, although it sounds convincing as a measure of
trustworthiness, has some apparently counterintuitive features as such a mea-
sure. Most obviously, the betweenness centrality of a degree-one node is zero
since there can be no flow through it. For example, for the path graph on four
nodes with edges {0, 1}, {1, 2}, {2, 3}, {3, 4}, nodes 0 and 4 have betweenness
centrality zero while the other nodes have positive betweenness centrality. In
contrast, all these nodes have positive eigenvector centrality. Interpreting the
betweenness centralities in terms of trust, there is no need to trust 0 and 4
to pass things along: any traffic involving 0 goes through 1, and any traffic
involving 4 goes through 3. More disturbing, all nodes in a complete graph
have betweenness centrality zero. Again, there is no need to trust anyone here
to pass things along as every shortest path connecting a pair of nodes consists
simply of the edge connecting those nodes: there is no flow through anyone.

EXPERIMENTS

We here present the results and interpretations of several experiments we have
run using three standard models of randomly generated networks: Er6dos-
Renyi (ER), Barabasi-Albert (BA), and Watts-Strogatz (WS) networks. We are
interested in the rankings of the nodes in a network determined by these mea-
sures. We show node rankings for an ER network according to betweenness
centrality, eigenvector centrality, and the geometric mean of the two. We are
also interested in the size of the spread between the highest trust value for
a node in a network and the lowest trust value for a node in that network.
We plot this spread for each of the three random models as a function of a
variable that controls the number of edges in a network, holding the num-
ber of nodes fixed. We present below the results and interpretations for the
ER, BA, and WS model, in that order. For references on models of randomly
generated networks in general, (Newman, 2018) is authoritative on technical
points, and (Easley, 2010) is on real-world issues.

The earliest model for generating random networks is the ER model
(Erd6s, 1959). Given 7 nodes, each possible edge has a fixed probability p of
being present, independently of the other edges. For each pair of values for
the parameters 7 and p, there is a family of networks. The degree distribu-
tion of a network is the number of nodes of the various degrees, plotted as a
graph number-of-nodes vs. degree. The degree distribution of ER networks is
Poisson, so the number of nodes decays exponentially with increasing degree.
They thus do not account for the formation of hubs (nodes of high degree),
which are often observed in social networks. ER networks also tend not to
generate triadic closures (where neighbours of a node are neighbours of each
other), which are also common in social networks. The NetworkX function
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used for random ER networks in this experiment is erdos_renyi_graph (1, p)

with # fixed at 20 and p varied as mentioned below.
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Figure 1: An ER network with n =20, p = 0.2.

Table 1 lists the top six and bottom six nodes in the ER network with
p = 0.2 shown in Figure 1 sorted in three ways, always by descending value:
by betweenness centrality, eigenvector centrality, and the geometric mean of
the two. Values are listed beside the nodes.

Table 1. Rankings of the nodes in Figure 1 by three measures.

Betweenness Eigenvector Geometric Mean
Node Value Node Value Node Value
1 0.218 7 0.106 1 0.140
7 0.112 5 0.099 7 0.119
10 0.108 14 0.099 14 0.110
14 0.103 6 0.092 10 0.105
5 0.087 10 0.085 5 0.102
17 0.080 1 0.075 6 0.078
8 0.009 19 0.027 13 0.019
3 0.007 3 0.025 3 0.015
2 0.003 16 0.021 2 0.006
0 0.000 4 0.021 0 0.000
18 0.000 2 0.008 18 0.000
19 0.000 18 0.005 19 0.000

Nodes 0, 18, and 19 have zero betweenness centrality and so also zero for
the geometric mean. Node 18 is a degree-one node and ranks lowest in eigen-
vector centrality. Nodes 0 and 19 are degree-two nodes each at the vertex of
a triangle whose opposite side provides a shortcut for flow to avoid the node,
but these nodes do not have very low eigenvector centrality. (0, not shown,
is ranked 10™ out of 20). Node 1 has high degree and the highest between-
ness centrality, almost twice that of the next node. It, however, is toward the
periphery of the graph. Its eigenvector centrality is not particularly high, but
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its betweenness centrality is so great that it ranks first in geometric mean.
The node with the highest eigenvector centrality is 7. It has high degree and
neighbours other nodes of high degree; it has the second highest betweenness
centrality and geometric mean. The node with the second highest eigenvector
centrality is 5, which also has high degree and neighbours high-degree nodes,
but it ranks only fifth in betweenness centrality as the opposite sides in the
triads it forms tend to shunt flow past it.

Figure 2 shows the average difference between the maximum and mini-
mum value for nodes in ER networks with #» = 20 and p from 0.2 to 0.7
by increments of 0.1. For each value of p, the difference between the max-
imum and the minimum value for a nodes was recorded for 100 generated
networks, and the mean and standard deviation were computed. The plot
shows the curve of mean values, and the error bars show the standard devia-
tion above and below the mean. The geometric mean decreases significantly
almost linearly. As the number of randomly placed edges in the network
increases (with increasing p), few nodes with low centrality remain. The min-
imum value increases while the maximum changes little (as, even for small p,
some nodes by chance are well embedded), and there is generally less spread
in values (hence decreasing standard deviation). That the spread decreases is
an indication that, with more randomly placed edges, truly untrustworthy
nodes become rare.
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Figure 2: Average difference between max. and min. values of geom. mean vs. p for
an ER network with n = 20 averaged on 100 runs for each p.

The Barabasi-Albert model for generating random networks (Albert,
2002) became popular for describing network formation based on popular-
ity, such as is the case with the Internet, where hubs tend to form (Kleinberg,
2010). The degree distribution of a BA network is a power law, generally of
the form %, where k is the degree and c is a constant (generally around 2
or 3). This decays much more slowly than the Poisson function for ER net-
works, thus accounting for hubs. Two major general concepts are captured
by the Barabasi—Albert model: growth (the number of nodes in the network
increases over time) and preferential attachment (a new node attaches to an
existing node with probability proportional to that nodes degree). The algo-
rithm has one parameter, 71, besides the final number of nodes. The network
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is initialized with at least 72 nodes, and at each step, a node is added and m
existing nodes are selected as its neighbours with probability proportional
to their degree. The BA model accounts for hubs but does not account for
large numbers of triadic closures The NetworkX function used for random
BA networks is barabasi_albert_graph (1, m) with #n fixed at 20.

Figure 3 is a plot generated like Figure 2 but for BA networks (instead
of ER networks) where the independent variable is the parameter m. The
code was executed for even integer values of m from 2 to 14. The curve
is concave upward with maxima of c¢. 0.225 at m = 2 and m =14 and a
minimum of ¢. 0.150 at m = 6. The standard deviation steadily decreases with
increasing 7. The initial decrease in the spread might be expected as with the
ER networks. Regarding the increase in the measure starting at m = 6, we
conjecture that, with increasing 72, how embedded hubs are in the network
becomes a dominant factor while non-hubs remain not very embedded.
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Figure 3: Average difference between max. and min. values of the geometric mean vs.
m for a BA network with n = 20 averaged on 100 runs for each m.

Watts-Strogatz Networks

The small-world phenomenon is the idea that the world looks small when
you consider how short the path of friends is from you to anyone. This idea
was famously supported by a study by Milgram and colleagues (Travers,
1969) where each “starter” was given a letter to get to a “target” by for-
warding through a chain of friends. Successful chains had a median length
of six (the origin of “six degrees of separation”). The Watts—Strogatz model
(Watts, 1998) is a random graph generation model that produces graphs with
small-world properties and is the simplest model that overcomes the lack
of triads found in ER yet retains the short average path lengths of the ER
model. This model has two parameters (besides the number of nodes), K and
p. The construction begins with a ring lattice (nodes can be arranged in a
circle with each node connected to its nearest neighbours on the circle) each
node of which has K neighbours, K/2 on each side. Then each lattice edge (u,
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v) is “rewired” with probability p: replaced with a new edge (, w) with uni-
formly random choice of existing node w. The lattice structure results in high
clustering (a large number of triads) while the rewiring produces shortcuts.
This model combines two fundamental social-network notions: homophily
(that we are connected to others who are like ourselves) and the strength of
weak ties (that mere acquaintances can provide information not available in
our circle of friends—see (Granovetter, 1974)). Its major limitation is that
it produces an unrealistic degree distribution, with a sharp peak at K. The
NetworkX function used for random WS networks is watts_strogatz_graph
(n, K, p) with # fixed at 20 and p at 0.2.

Figure 4 is a plot generated like Figure 3 but for WS networks (instead
of BA networks) where the independent variable is the parameter K. Here,
however, the values for the difference of the extremes for betweenness values
alone (rather than for the geometric mean of the two centrality measures) are
plotted since calculations for eigenvector centralities of WS generally did not
converge. The code was executed for even integer values of K from 4 to 16.
Like the curve for ER networks, this curve decreases roughly linearly, in this
case, with K. While the independent variable in the ER plot is p and here it
is K, we still note similarities. Apparently, the short path lengths of both the
ER and the WS models are decisive here, and here again, as the number of
edges in the network increases (with increasing K now), few nodes with low
centrality remain. The minimum value increases while the maximum changes
little, and there is generally less spread in values.
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Figure 4: Average difference between max. and min. betweenness centralities vs. K for
a WS network with n = 20, p = 0.2 averaged on 100 runs for each K.

CONCLUSION AND FUTUREWORK

This paper develops a measure of trustworthiness for members of a social
network. Nodes represent people, and edges represent explicitly declared
friendships. Such a network supports collaborative effort in a particular
domain. This is trustworthiness (worthy of trust), not trust as an attitude
to another, and our measure of it for a person is the geometric mean of their
betweenness and eigenvector centralities in their network. We rank the people
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in the network according to these values and work with normalized values
of the centrality measures and their geometric mean. We show the rankings
of the people/nodes in an Erd6s-Renyi (ER) network.

Our experiments use the Barabasi-Albert (BA) and Watts-Strogatz (WS)
models for generating random networks in addition to the ER model. We
note the average difference between the maximum and the minimum trust-
worthiness of the people in a social network since the greater this spread, the
clearer the choice between trustworthy and not trustworthy. This difference
is plotted against the independent variable of each model that results in an
increasing number of edges for a fixed number (20 throughout) of nodes.
For ER networks, this is the probability p of an edge between each pair of
nodes, for BA networks, it is the number 72 of existing nodes selected (with
probability proportional to their degree) as neighbors of each new node, and
for WS networks, it is the number K of nearest neighbors to which each
node in the initial ring lattice is connected. For the ER networks, the differ-
ence in trustworthiness scores decreased significantly and nearly linearly for
p in the range [0.2, 0.7]. Note that the spread decreases but the trustwor-
thiness values increase: it is harder to distinguish the trustworthy from the
not trustworthy since everyone is pretty trustworthy. Similarly, the difference
in scores for the WS networks decreased significantly and nearly linearly for
K an integer from 4 to 16. For BA networks (which alone among the three
models account for hubs), however, for 7 an integer from 2 to 14, the dif-
ference scores decreased significantly to a minimum at #2=6 then increased
significantly, at m=14 to about the value at m=2. We conjecture that, with
increasing 72, how embedded hubs are in the network becomes a dominant
factor while non-hubs remain not very embedded.

We have used our measure of trustworthiness in defining a protocol for a
group using the WebID distributed authentication protocol to decide whether
to admit a candidate. Pairs of group members are linked by reciprocal
foaf:knows triples in their RDF profiles representing declared friendships.
These links are the edges in a technological network that supports a social
network. In that application, the weight an individual has in the decision
to admit a candidate into the group is determined by their trustworthiness
measure. This is but one example of how the work reported here provides a
secure way for people to communicate and collaborate. Humans are critical
here as they form the social networks, which have a structure that supports
measures of trustworthiness. In the future, we shall look for other applica-
tions of our measure in social networks, and we shall continue to investigate
how our measure is sensitive to the formal characteristics of social networks,
hoping to find additional general notions with real-world significance.
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