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ABSTRACT

Electroencephalography (EEG) is a technique that captures the electrical activity of the
cerebral cortex, effectively reflecting various rapid cognitive processes. Traditional
EEG devices, often large and bulky, are impractical for real-world applications. To
address this, wearable and wireless EEG systems have been developed as cutting-
edge technology. However, there remains uncertainty about their signal quality. In
this study, we introduce a systematic comparison method customized for portable
wireless EEG devices. This experiment includes three tasks: α-suppression, Biofeed-
back, and the Stroop Colour and Word Test, evaluating signal quality in both time
and frequency domains. In the α-suppression task, we analyzed spectral power in
the α band, Signal-to-Noise Ratio (SNR), Root Mean Square (RMS), and artifact rejec-
tion. For the biofeedback task, we evaluated Engagement (β/(α+θ )) and Relaxation
(α/β) indices. We also measured the N400 amplitude during the Stroop Colour and
Word Test. These indicators represent varying levels of signal quality requirements,
from low to high. Additionally, to assess whether semi-dry EEG devices can match the
performance of medical-grade gel electrodes, further significant difference and cor-
relation analysis between the two types of devices were conducted. The frequency
domain analysis revealed alpha suppression during eyes-open states and increased
relaxation and engagement states during the biofeedback task compared to resting
state. In the time domain analysis, although no statistical significance was observed
in the N400 component, a clear trend of a larger N400 under inconsistent conditions
was evident in waveform and topographic maps. Furthermore, difference tests and
correlation analysis between the two devices demonstrated a strong positive corre-
lation in signals and consistent performance across all tasks. These findings suggest
that portable EEG devices provide reliable signal accuracy in real-world settings, the
signal quality of the semi-dry electrodes used in this study is comparable to that of
medical-grade gel electrodes.
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INTRODUCTION

Electroencephalography (EEG) technology originates from the synchronized
synaptic activity of numerous neurons in the cerebral cortex. It involves the
collection of signals from electrodes placed on the surface of the scalp. Unlike
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other brain imaging methods such as Functional Magnetic Resonance Imag-
ing (fMRI), EEG provides cost-effectiveness along with distinct advantages
including non-invasive, silent recording, and it also offers high temporal
resolution and safety. However, EEG signals are susceptible to interference
from environmental factors such as electromagnetic fields and physiologi-
cal artifacts, which necessitates controlled laboratory conditions for research
(Kezi Selva Vijila et al., 2007; Jiang, Bian and Tian, 2019).

Advancements in emerging sensor technology, digital signal processing,
and deep noise reduction techniques have enabled the miniaturization of EEG
amplifiers while maintaining high signal precision. Additionally, progress
in wireless data transmission technologies facilitates the wireless transfer of
EEG signals to remote software (Brown et al., 2010; Aznan et al., 2019). The
integrated application of these technologies has propelled the development
of portable, wearable, and wireless EEG devices, expanding the horizons of
EEG technology’s applications (Dabbaghian et al., 2019).

Portable EEG is rapidly demonstrating its potential across multiple fields.
For instance, in the realm of abnormal sleep detection, EEG technology is
used for monitoring sleep cycles and identifying sleep disorders (Szu, Tran
and Lalonde, 2014). In biofeedback applications, EEG aids individuals in
improving their mental states bymonitoring brain activity (Phneah andNisar,
2017). In the field of brain-computer interfaces, EEG is utilized for control-
ling robotic arms or recognizing emotions and other states (Zhang, Ji and
Zhang, 2016; Rahman et al., 2021; Hu et al., 2022).

However, the signal quality of these devices and the impact of different
conductive mediums on signal quality remain unclear. There have only been
a few articles dealing with this issue. For instance, Wyckoff et al. (2015)
and Di Flumeri et al. (2019) directly compared research-grade gel electrodes
with portable dry electrodes in their device selection. This comparison cov-
ers different electrode materials, conductive mediums, and amplifier designs,
exhibiting a significant leap in levels, More importantly, these two types of
devices have different application fields, making such direct comparisons
unfair to portable EEG devices. Meanwhile, Ahn, Ku and Kim (2019) only
compared their self-developed dry electrodes with those dry electrodes that
have relative recognition in the industry to validate the effectiveness of their
devices, there was no comparison of portable devices with different con-
ductive mediums. Additionally, in these studies, most comparisons of signal
quality between different devices are based on a single dimension, (Bashivan,
Rish and Heisig (no date); Ahn, Ku and Kim, 2019), without setting eval-
uation indicators representing different signal qualities, we only know the
limited availability of the device, but its generalization ability cannot be
evaluated.

In our study, we aimed to establish a comprehensive assessment framework
that includes various dimensions such as the time and frequency domains.
This framework employs criteria with progressively increasing signal qual-
ity from low to high (Wyckoff et al., 2015), this gradation allows for a
thorough evaluation of the performance of portable devices. Additionally,
we conducted a comparative analysis between a gel-based and a semi-dry
portable EEG device. This comparison not only reveals potential differences
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between two different portable EEG devices, but also serves to validate the
rationality of our assessment framework to a certain extent.

EEG SYSTEM

ErgoLAB Semi-Dry EEG

The system comprises 16 active channel electrodes and 1 earlobe clip refer-
ence electrode. It is equipped with PPG, EDA, and 9-axis sensors. With an
input impedance exceeding 10G�, a common mode rejection ratio (CMRR)
of 110dB, and a signal-to-noise ratio (SNR) of 120 dB, sampling rate reaches
up to 1024Hz, and the resolution is 24 bits.

StarStim 8 Gel Electrode EEG

StarStim 8 is a medical-grade gel electrode EEG device. It has a sampling rate
of 500 SPS, a resolution of 24 bits, a sensitivity of 0.05 uV, and a signal-to-
noise ratio of −115 dB. It adopts a dynamic bandwidth format, supporting
a broadband range of 0 to 125 Hz. The device takes the form of an ear-
clip reference electrode and supports continuous data acquisition for up to
6.5 hours.

EXPERIMENT

Participants

Fifteen participants were involved in experiments over two different days,
using bothmedical-grade gel electrodes and portable semi-dry electrodes. The
Latin square method was employed to balance the order of device usage and
the timing of the experiments. Each participant completed the experimental
tasks in the same procedure (Figure 1).

Procedure

In this study, three tasks were performed to evaluate the acquired signal from
both devices. Those tasks are explained as follows (see Figure 1).

Figure 1: Experimental procedure flowchart.
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Alpha Suppression Task

Alpha suppression is characterized by a reduction in alpha wave activ-
ity (8–12Hz) when transitioning from a closed-eye to an open-eye resting
state (Haueisen et al., 2020), which is a phenomenon particularly promi-
nent in the occipital region, and has relatively low requirements for signal
quality. In our experiment,we conduct three-minutes sessions of both open-
eye and closed-eye resting states.

Additionally, we calculate the Signal-to-Noise Ratio (SNR) and the Root
Mean Square (RMS) during the resting state as metrics for assessing sig-
nal quality, the corresponding formula is as follows (Harke Pratama et al.,
2020).

SNR = 10 ∗ log10

[
σ 2
α

σ 2
1−70Hz

]
(1)

RMS =

√√√√ 1
N

N∑
i = 1

x2i (2)

• N is the number of samples in the segment
• Xi is the value of the i-th sample in the segment.

Biofeedback Task

The biofeedback task encompasses two distinct sub-tasks. In the Line Judg-
ment Task, participants adjust and match the length of a comparison line to
a standard line. Here, the engagement index (E) is calculated using the ratio
E=β/(α+θ ) (Freeman et al., 2004; Marcantoni et al., 2023), which serves
to measure the participants’ level of focus during the task. In the Breathing
Relaxation Task, participants perform relaxation exercises guided by a video,
aiming to achieve a state of relaxation, the relaxation index (R) is calculated
using the ratio R=α/β, (Phneah and Nisar, 2017). More variables lead to
greater variability in results, so the signal quality requirements for R=α/β
are not as high as for E=β/(α+θ ).

Stroop Colour and Word Test

In the Stroop Colour and Word Test, when participants are required to judge
whether the font color matches the semantic meaning of the word, incon-
gruent condition is typically induces larger N400 (350–450ms) com-
ponents compared to the congruent condition (Liotti et al., 2000;
Li et al., 2011). This phenomenon represents increased cognitive con-
trol in response to the conflict between the font color and word meaning.
ERP is often masked by spontaneous potentials, requiring a large number
of trials to be averaged to reveal it, which demands high signal quality. A
total of 140 trials were conducted, with an equal number of congruent and
in-congruent stimuli (Ahn, Ku and Kim, 2019; Wyckoff et al., 2015).
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EEG DATA PREPROCESSING

To ensure consistency in the final data structure between two devices, the
steps are as follows:

Sampling Rate Adjustment: After electrode localization, the sampling rate
of the StarStim 8 is adjusted to 256Hz.

Channel Reduction: The number of channels on the ErgoLAB semi-dry
EEG is reduced to 8 to align with the Starstim 8 configuration (Figure 2).

Filtering Process: The raw EEG data are processed using EEGLAB2021
with a band-pass filter from 0.1Hz to 70Hz, and a 50Hz notch filter to
attenuate electrical line noise and minimize artifacts.

Independent Component Analysis (ICA): An 8-channel ICA is conducted
for both devices. Ocular artifacts and other artifacts are identified and
manually removed, based on distinct topographical and temporal features.

Data Segmentation and Baseline Correction: The EEG data is divided
into segments based on the experimental tasks. For the Stroop Colour and
Word Test, epochs from −200ms pre-stimulus to 1000ms post-stimulus are
selected, with a 200ms pre-stimulus period serving as the baseline. Trials with
incorrect responses are excluded using response markers. For the other three
tasks, the data are divided into 2-second segments.

Visual Inspection and Removal of Bad Segments: The data from all tasks
are visually inspected, and segments with poor signal quality are identified
and removed.

Whole Brain Average Referencing: Finally, a whole-brain average referenc-
ing is implemented to standardize the EEG data across all channels.

Figure 2: Channel distribution.

RESULTS

Number of Artifacts

EEG signals are non-stationary, and the lower the signal-to-noise ratio, the
more noise is contained in the signal, leading to greater amplitude vari-
ability. In this study, the EEGLAB plugin was used to perform automatic
artifact detection using the Max-min method on 3 minutes of resting-state,
eyes-closed data (90 segments * 8 channels). Each segment was 2 seconds
long, with a voltage range of ±80 micro volts. When the voltage difference
between the maximum and minimum reached 160 micro volts, the segment
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was marked as a bad segment. If the number of bad segments in a chan-
nel exceeded 20%, that channel was marked as a bad channel (Morán and
Soriano, 2018; Radüntz, 2018), averaging the results of the 15 participants.
The table below indicates that the artifacts contained in both devices are at
a lower level.

Table 1. The number of bad channel and electrodes in two devices (total 720 segments).

Devices ErgoLAB semi-dry EEG StarStim 8 gel EEG

Number of bad segments (n = 720) 0.8 0.13
Number of bad electrodes (n = 8) 0 0

SNR and RMS in Alpha Suppression Task

We computed the mean SNR and RMS of O1 and O2 as generic indicators to
assess signal quality. Paired sample T-tests were conducted on the SNR and
RMS of both devices during eyes-closed resting states. The results indicate
that although the RMS of the semi-dry electrodes is higher than that of the
gel electrodes, t(28) = 13.869, p < 0.001, there is no significant difference in
the SNR between the two (Figure 3), t(28) = 0.033, p = 0.974. This suggests
that the signal quality of the semi-dry electrodes is comparable to that of the
gel electrodes, and their original signal amplitude is larger, enabling better
noise resistance.

Figure 3: RMS (left) and SNR (right) for the two devices, where ‘EE’ represents ErgoLAB
semi-dry EEG, and ‘NE’ represents StarStim 8 gel electrode EEG.

Analysis of Power Spectral Density

After prepossessing, Fast Fourier Transform (FFT) was applied to obtain the
energy values in the frequency domain. In accordance with previous research,
the average of O1 and O2 values will be used for analysis. Firstly, Pearson
correlation analysis was conducted separately for the energy values ranging
from 1 to 70 Hz for two devices during both open-eye and closed-eye states.
Subsequently, a paired sample t-test was performed on the alpha suppression
of the two devices.

There is a strong positive correlation between the energy variations
of the two devices in the 1–70 Hz range (Bashivan, Rish and Heisig,
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no date; Kam et al., 2019), rs > 0.98, ps < 0.001 (Figure 4). The results
of the α band t-tests indicate that whether it’s the semi-dry electrode,
t(28) = −4.060, p < 0.001, or the gel electrode, t(28) = −3.077, p = 0.005,
the alpha power during eye-closed state is significantly higher than during
eye-open state. Simultaneously, this difference is consistent across different
devices (Figure 5 & Figure 6), t(28) = 0.452, p = 0.655.

Figure 4: Correlation during closed-eye (left) and open-eye resting states (right) on
both devices.

Figure 5: PSD in the 1–70 Hz range, where “EC” represents eye closed, and “EO”
represents eye open.

Figure 6: Average values of the alpha frequency (left) and power spectrum topograph-
ical maps (right).

Engagement (β/(α + θ )) and Relaxation (α/β)

In comparison to alpha suppression, tasks like breathing relaxation and line
judgment involve mathematical operations on energy values from multiple
frequency bands, making them more sensitive to data signal quality.
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In order to examine whether the portable electrodes can still sensitively
capture stimulus-induced differences, repeated measures analysis of variance
(ANOVA) was conducted on the two factors: 2 devices (EE, NE) and 2
states (task, eye-open), using Engagement=β/(α+θ )and Relaxation=α/β as
the indicators, FFT was also applied to these data, units in µV2.

The main effect of the feedback state is statistically significant, with
F(1,59) = 13.999, p < 0.001, whether it’s the semi-dry electrode,
F(1,59) = 6.062, p= 0.017, or the gel electrode, F(1,59)= 8.005, p= 0.006,
the relaxation indicators in feedback task are greater than those during the
resting state (Figure 7). there is no interaction between the devices and state,
F(1,59) = 0.067, p = 0.796.

Figure 7: Average values of the alpha beta ratio (left) and power spectrum topograph-
ical maps (right). ‘FB’ represents feedback.

In the line judgment task, there was no significant difference in β/(α+θ )
between the task state and the open-eye resting state, with F(1,59) = 1.646,
p = 0.205. Furthermore, when compared to the eye-closed, it was found that
both the gel device F(1,59) = 33.593, p < 0.001, and the semi-dry device
F(1,59)= 13.907, p < 0.001, had significantly higher Engagement during the
line judgment task (Figure 8), there is no interaction between the devices and
state, F(1,59) = 1.748, p = 0.191.

Figure 8: Average values of β/(α+θ ) (left) and power spectrum topographical maps
(right). ‘LJ’ represents line judgment, ‘EC’ represents eyes closed rest, and ‘differ’
represents the topographical map of the difference wave between LJ and EC.
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N400 Amplitude

Referring to previous research, a repeated measures analysis of variance 2
(devices (EE, NE) and 2 conditions (consistent, inconsistent)) was conducted
on the average amplitude of N400 (350–450ms) using four anterior hemi-
sphere channels, (Marini et al., 2019) namely FPZ, F4, C3, and C4, while
the N400 amplitude was larger under the inconsistent condition compared
to the consistent condition, but the difference did not reach statistical signif-
icance (Figure 9), ps > 0.350,and there was no observed interaction between
the devices and conditions, ps > 0.225.

Figure 9: N400 waveform and topographical map, ’FC’ represents the frontal and cen-
tral areas, ‘P’ represents the parietal area, and ‘O’ represents the occipital region. ‘Con’
represents consistent, and ‘Incon’ represents inconsistent.

CONCLUSION

This study established a comprehensive evaluation framework, assessing the
performance of portable EEG devices in terms of frequency domain, time
domain, and general signal quality indicators.

Frequency domain indicators include alpha waves, alpha/beta ratio, and
beta/(alpha+theta) ratio. Due to the narrow frequency range of a single band,
they are easier to separate from noise. In contrast, the computational indica-
tors of multiple frequency bands are more sensitive to the level and type of
noise. Therefore, the requirements for signal quality of these three indicators
gradually increase from low to high. The results show that the energy value
of alpha waves in the closed-eye resting state is higher than that in the open-
eye state, and the relaxation and engagement indicators under biofeedback
conditions are higher than those in the quiet state. In the time domain anal-
ysis, although there was no significant difference in the N400 (Liotti et al.,
2000; Li et al., 2011) component statistically between the consistent and
inconsistent conditions, a clear trend can be seen in the waveform and topo-
graphic maps.Overall, these research results show that portable EEG devices
can adapt to more realistic application environments and provide reliable
signal accuracy.
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To further assess the differences in signal quality among portable devices
with different conductive media, this study added three general indicators
such as artifact rejection rate, signal-to-noise ratio, and root mean square of
the signal on the basis of time-frequency domain indicators and conducted
a difference test between devices. In addition, the correlation of devices in
the 1–70 Hz frequency band under closed and open-eye states was analyzed
(Kam et al., 2019). The research results show that there are no significant dif-
ferences in signal quality between the two devices, and the signals show a high
degree of similarity. This finding confirms that the two portable EEG devices
with different conductive media currently used have similar performance in
practical applications.

In future research, we plan to enhance the study by balancing the sequence
of experimental tasks, expanding the participant pool, and incorporating a
greater variety of portable EEG devices, particularly those equipped with dry
electrodes. These improvements aim to establish a more robust evaluation
system and enable a more precise assessment of portable electrode devices.
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