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ABSTRACT

Human-machine function allocation is the process of determining how a system
functions or tasks are distributed between humans and machines. Reasonable human-
machine function allocation is a key factor in ensuring system safety and performance.
Considering the deficiency of existing methods of human-machine function allocation,
this paper proposes a generalized framework for human-machine function alloca-
tion covering the static and dynamic function allocation phases. The functional units
formed by task decomposition engage in the framework as input. The function allo-
cation solution space is first established based on the consideration of strengths and
weaknesses of humans and machines and the task requirements to their capabilities.
Then feasible solution space is formed in response to situational factors to imple-
ment a flexible human-machine function allocation, so as to provide more possibilities
for timely and effective response to various possible safety problems. Finally, opti-
mal solution is determined by comprehensive evaluation with trade-off criteria and
relative suitability rules of humans and machines to realize safer and more efficient
human-machine collaboration. In addition, the limitation and preference rules in terms
of human and machine capabilities, situational feasibility rules established with situ-
ational triggering indicators, a comprehensive evaluation with trade-off criteria and
relative suitability rules of humans and machines are summarized to illustrate the
application of the framework.
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INTRODUCTION

With the application of automation or autonomy technologies in various
systems, the relationships between humans and machines in the joint per-
formance of tasks has received more and more attention. In a traditional
human-machine interaction, the operator controls a machine to complete
task by giving the command to machine and supervising its work, while the
machine passively executes the command and feeds the result back to the
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operator through the display (Harel, 2020); while in the new type of inter-
action, the interaction may be initiated by the machine, which senses the
situation and gives suggestions, or adapts to the environment and actively
performs tasks; accordingly, the operator performs the tasks based on the
machine’s recommendations or the results of the tasks (Harel, 2020). How to
reasonably allocate functions and power between humans and machines has
become the key issue of human-machine integrated system design. Human-
machine function allocation is the process of determining how a system
functions or tasks are distributed between humans and machines (Depart-
ment of Defense, 2011). Reasonable human-machine function allocation is
a key factor in ensuring system safety and performance. If too many tasks
are assigned to human, it may lead to overloading; if tasks are assigned to
machines as much as possible, it is easy to cause human to become over-
reliance, with a decline in their skills and situation awareness (“human
out-the-loop”), making it difficult for them to deal with unexpected situ-
ations (Endsley, 2015). Improper human-machine function allocation may
lead to the conflict of human-machine intentions, decisions and actions,
which is the root cause of accidents in many complex systems (Sun et al.,
2020). Thus, it is important to fully consider the advantages and disadvan-
tages of humans and machines to establish the function allocation solution
space and find an optimal solution for a specific task situation, realizing safer
and more efficient human-machine collaboration.

Many researchers summarized general principles, key factors and mea-
surement criteria for the labour division between human and machine (Kim
et al., 2008; Madni et al., 2018; Pritchett et al., 2014; Steinhauser et al.,
2009). There are some human-machine function allocation methods, includ-
ing MABA-MABA list (Fitts, 1951), Price’s decision matrix (Price, 1985),
scenario-based method (Dearden et al., 2000), method based on automation
level and information processing stage (Parasuraman et al., 2000) and so on.
However, the existing methods of human-machine function allocation have
been criticized for poor generalizability, incomplete solution exploration, and
insufficient trade-off with limited criteria. As a result, the existing human-
machine function allocation methods are difficult to be directly applied in
engineering design. In addition, with the change of task context and human/-
machine states, a predetermined human-machine function allocation solution
may no longer be the optimal, or even no longer a feasible one, and thus
needs to be adjusted in time. Although some methods put forward the con-
cept of “dynamic” allocation according to the situation requirements and
the state of human and machine, dynamic human-machine function allo-
cation has not been really practiced in complex safety-critical systems at
present. Thus, this paper proposes a generalized framework for human-
machine function allocation covering static and dynamic allocation phases,
with the consideration of strengths and weaknesses of humans and machines
and situational factors. It provides a systematic framework and practical
guidance for optimizing human-machine relationships in human-machine
collaboration.
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A GENERALIZED FRAMEWORK FOR HUMAN-MACHINE FUNCTION
ALLOCATION

The generalized framework for human-machine function allocation proposed
in this paper includes static and dynamic allocation phases (see Figure 1)
and can be divided into the following parts: Generation of functional units
(Pritchett et al., 2014) for allocation based on task decomposition, where a
functional unit means a set of task/function elements to be allocated together
to one performer, either a human, a machine, or a team of humans, machines
or their combinations; Screening human-machine function allocation alter-
natives according to limitation and preference rules based on human and
machine capability measures, resulting in an initial human-machine func-
tion allocation alternative solution space; Applying situational feasibility
rules established on situation assessment models when predefined trigger-
ing criteria are matched, to identify the feasible human-machine function
allocation solutions for the current situation; Determining the optimal solu-
tion according to a comprehensive evaluation with trade-off criteria and/or
relative suitability rules of humans and machines.

Figure 1: The generalized framework for human-machine function allocation.

Task Decomposition

Task decomposition is the process of splitting a task into a series of functional
units. A very tricky problem is when to stop task splitting. The smaller the
granularity of the decomposition, the larger the space for human-machine
function allocation alternatives. However, considering the cost of functional
units switching between different performers and the fluency of human-
machine collaboration process, the decomposition of functional units needs
the appropriate granularity. One approach is to decompose the task layer
into meta-operations (that is, the smallest operations or activities that can be
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identified or defined) (Jonassen et al., 1989; Qiu et al., 2014) and then com-
bine one or more meta-operations into a functional unit according to certain
rules. Another approach is to break task down directly into the granularity
that conforms to the established rules. Thus, the functional unit construction
rules should be formulated according to the needs of stakeholders, the char-
acteristics of actual tasks and the limitations of existing technical conditions.
For example:

• The order in which several meta-operations occur should be contiguous
and fixed;

• It is unnecessary to change performers for the adjacent meta-operations;
• The cost of changing performers for the adjacent meta-operations is too

high.

The functional elements involved in each functional unit could be iden-
tified to help establish relevant limitation and preference rules and relative
suitability rules based on human and machine capability measures. Based on
cognitive activity theories such as Information Processing Model (Wickens,
1992) and Macrocognitive Model (Whaley et al., 2016), this study proposes
a general framework of functional elements (see Table 1) that can be further
expanded for specific applications.

Table 1. The general framework of functional elements.

Cognitive activity types Functional elements

Sensation and perception Visual/auditory detection, Monitor, …
Selection and decision-making Identification, Check, Evaluation,

Judgement, Proposal, Plan, Selection,
Decision-making, …

Action execution Control, Operation, Record, …
Teamwork Communication, Coordination, …

Initial (Static) Human-Machine Function Allocation Base on
Limitation and Preference Rules

The human and machine capability boundary (limitations) are the basis
for the preliminary screening of function allocation alternatives. Human
abilities can generally be divided into two categories: cognitive capabili-
ties and physical capabilities. Machine capabilities refers to the extent to
which a machine/system is capable of performing a certain task/function.
The technical indicators and performance parameters of the machine/system
can be used to determine whether it has the ability to complete a certain
task/function. Different scenarios and tasks have different requirements of
human and machine capabilities, which means that the preliminary screening
rules (i.e. limitation and preference rules) cannot be developed indepen-
dently from the actual tasks. Therefore, it is necessary to determine the
requirements of human and machine capabilities for each functional unit in
a specific task, and then match it with the capability boundary to screen
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out the alternatives in which the human or machine capabilities cannot
meet the requirements, so as to obtain the initial (static) human-machine
function allocation alternative solution space. With reference to the NASA
Space Flight Human Systems Standard (NASA-STD-3001) (National Aero-
nautics and Space Administration, 2022) and theHuman Integration Design
Handbook (NASA/SP-2010-3407) (National Aeronautics and Space Admin-
istration, 2014), Table 2 sorts out human and machine capability indicators,
and illustrates how to establish limitation and preference rules according to
the actual task requirements.

In addition to human and machine capability boundaries, constraints such
as policy and cost (such as restrictions on automation, authority of human
and machine, costs of personnel training, operation and maintenance), orga-
nizational constraint (considering whether an alternative solution conforms
to combat tactics, procedures, regulations and culture) can also be used as
the preliminary screening rules.

Feasible (Dynamic) Human-Machine Function Allocation Base on
Situational Feasibility Rules

The dynamic human-machine function allocation is mainly carried out based
on various triggering indicators and their corresponding situational variables.
Triggering indicators are different categories of information in a situation
that can be perceived, observed, and modelled to build an understanding
of the current situation or what is happening. There are many situational
variables that may lead to changes in the human-machine function allocation
(Feigh et al., 2012). The situational triggering variables mentioned in the
literature are summarized and divided into five categories:

Table 2. Classification of human and machine capability indicators.

Classification Indicators Rules (example)

Cognitive
capabilities

Sensation and
perception

Visual perception: visual acuity,
spatial contrast sensitivity, field of
regard, depth perception, visual
detection accuracy, etc Auditory
perception: absolute threshold of
hearing, auditory localization,
auditory detection accuracy, etc.

If the distance of the target in
visual task (such as detection)
≥___, then performer should
be___.

Selection and
decision-
making

Information integration, logical
reasoning, problem-solving,
decision reliability

Considering safety, human should
make the decision.

Action
execution

Sensorimotor ability (e.g. balance,
eye-hand coordination, control),
operation speed, operation
accuracy

If the operation speed needs ≥___,
then the performer should be___.

Common
indicators

Working memory, information
processing speed (reaction time),
continuous working time

If the working time ≥___, then the
performer should be___.

Physical
capabilities

Reach
envelope

Comfortable and maximum
working area

If the distance of target to be
operated on ≥___, then the
performer should be___.

Physical
ability

Strength, aerobic capacity, speed,
endurance

If the pulling force required to
open a device is ___, then the
performer should be___.
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Operator variables include operator states and operator performance.
Operator states refer to those variables that reflect the psychological and
physiological states of an operator, such as workload (Hansson et al., 2009;
Salvendy and Karwowski, 2021), fatigue (Phillips, 2015), situation aware-
ness (Endsley, 2021), distraction (Hedlund, J. et al., 2006) etc. The change
of personal states may trigger function reallocation between human and
machine. Operator states behaviours affects task process, possibly resulted
in abnormal behaviours and poor task performance (safety, efficiency and
effectiveness). When operator performance is significantly reduced or an
abnormal behaviour occurs during the task process, the automationmay need
to take over the task.

System variables include system performance (efficiency and effectiveness)
and failures (unable to perform task as expected). When system performance
decreases significantly or a system failure suddenly occurs, human need to
take over the automated tasks.

Task variables are those task characteristics that may affect human or
machine performance and their collaboration. This category triggers the real-
location of human-machine function mostly for the change of task complex-
ity (such as size, action complexity, temporal demand and so on) (Braarud
and Kirwan, 2011; Liu and Li, 2012; Wood, 1986) and difficulty.

Environment variables refers to environmental states or spatio-temporal
changes in the environment that may affect human or machine performance
and their collaboration, including temperature, noise, vibration, visibility, etc.

There may be a number of situational variables that can be directly
observed or measured to reflect the level of a situational trigger. The values
and threshold of the situational variables can be converted into a “suitability”
criterion. Suitability refers to the appropriateness of allocating a functional
unit to a performer under a specific situation. It can be set up as a man-
agement criterion, or determined by domain experts based on actual task
requirements. Table 3 presents some examples of situational feasibility rules,
noting that these rules are generalized, qualitative, and non-exhaustive.

Comprehensive Evaluation With Trade-Off Criteria and/or Relative
Suitability Rules

In both the initial (static) or the feasible (dynamic) human-machine function
allocation phases, alternative solutions need to be evaluated to achieve an
optimal solution. Two evaluation methods may be employed:

One is comprehensive evaluation with trade-off criteria. Through litera-
ture review (Feigh and Pritchett, 2014; Kim et al., 2008; Madni et al., 2018;
Parasuraman et al., 2000; Roth et al., 2019; Sushereba et al., 2019) and
expert discussion, this study sorted out a set of trade-off criteria for human-
machine function allocation. They can be divided into outcome criteria and
process criteria. The former includes risk of safety (the possibility of an acci-
dent/event occurring and the severity of the consequences), the degree of goal
achievement (such as success rate and cost) and efficiency (such as completion
time and resource utilization). The later includes team coordination, work-
load, (shared) situation awareness, human reliability, machine reliability, etc.
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The trade-off criteria can be evaluated by quantitative or qualitative evalu-
ation methods. If needed, a comprehensive evaluation could be obtained by
weighting the trade-off criteria.

The other is the use of relative suitability rules of humans and machines.
The list of relative suitability of human and machine in Table 4 was con-
structed based on the relevant researches (e.g. Cummings, 2014; de Winter
& Dodou, 2014; Fitts, 1951; Schoettle, 2017). The relative suitability rules
can be established by considering task requirements (see Table 5), which are
used to evaluate the suitability of current feasible performers. Then the per-
formers with the highest suitability of each functional unit could be selected
as the optimal ones.

Table 3. Examples for situational feasibility rules (value are used as example only).

Situational triggering indicator Situational feasibility rules Levels

Operator Workload If workload level is high and the
performer is a human, then his
suitability is 30.

Low
Medium
High

System System state If the system state is unavailable and
the performer is a single system, then
its suitability is 0.

Available

Unavailable

Task Available time If time is marginal and the performer
is a human, then his suitability is 40.
If time is inadequate and the
performer is a human, then his
suitability is 0.

Adequate

Marginal
Inadequate

Environment Temperature If temperature is beyond the
acceptable level for human and the
performer is a human, then his
suitability is 0.
If temperature is beyond the
acceptable level for a machine, then
the task needs to be terminated.

Acceptable to
human

Acceptable to
machine
Too high or too
low

Table 4. Examples of relative suitability of human and machine.

Dimension Indicator Human Machine

Sensation and
perception

Range of
perception
(visual/auditory)

Limited Wider than human

Selection and
decision-
making

Information
processing

Can only process a small
amount of data

Better at processing
mass data

Action
execution

Consistency of
operation

Variable, especially for
highly repetitive and
routine tasks

Highly consistent,
better especially for
tasks requiring
constant vigilance

General
indicators

Continuous
working time

limited and relatively short
working duration

Can work for a long
duration
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CONCLUSION

By summarizing the analysis process, advantages and disadvantages of the
existing human-machine function allocation methods, this paper proposes a
generalized framework for human-machine function allocation. The method
includes some important steps: task decomposition, initial (static) human-
machine function allocation base on limitation and preference rules, feasible
(dynamic) human-machine function allocation base on situational feasibility
rules, and comprehensive evaluation with trade-off criteria and/or relative
suitability rules. The generalized framework provides a practical guidance
for systematic and flexible human-machine function allocation analysis,
to ensure safety and task performance by adjusting and optimizing the
relationship between human and machine in different task situations.

Table 5. Examples for relative suitability rules (value are used as example only).

Indicator Relative suitability rule Levels

Inference
complexity

If complexity is high, and the performer is a
machine, then the suitability is 30.
If complexity is high, the available time is
adequate, and the performer is a human, then the
suitability is 90.

Low

Medium

High

Task type If it is a knowledge-based task, and the functional
elements involve evaluation and judgment, and
the performer is a machine, then the suitability
is 30.
If it is a knowledge-based task, and the functional
elements involve evaluation and judgment, and
the performer is a human, then the suitability
is 90.

Knowledge-
based
task

Otherwise
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