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ABSTRACT

In visual search, increasing the number of elements makes target identification more
difficult. Identifying a target becomes even more complex in real world scenarios
where operators might need to accumulate evidence across movement patterns – a
form of dynamic decision making. In a simple simulation, participants moved their
ownship around a water space, while observing movements of three, six, or nine ves-
sels around them, one of which exhibited a hostile behavior. Results indicated that
accuracy above chance of hostile ship detection did not differ across set sizes, however
participants took more steps as the number of ships increased. Participants gener-
ally aggregated far less than the optimal amount of evidence, reflected in the overall
average accuracy of 53%. This hints at overwhelming challenges to working mem-
ory in these types of dynamic decision-making situations. Implications for real-world
scenarios and possible automated aids are discussed.
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INTRODUCTION

In naval contexts, the ability to identify a hostile entity is crucial. While
current technologies often offer information about nearby entities, this
information is not always available or accurate, especially at far distances
(Dahbom & Nordlund, 2013). In maritime settings in particular, the move-
ment patterns of ships can indicate potential hostility. For example, ships that
move closer or follow your ownship’s movements have been used to identify
enemies (Lane et al., 2010; Liebhaber et al., 2002). This can be useful when
automated technologies fail, such as in crowded ports or when the entities are
at far distances. However, previous research has shown that humans are not
proficient at identifying intent from movement patterns (Patton et al., 2021;
2022), and thus there is a need to elucidate what aspects of this task make it
difficult.

To begin investigating this issue, Patton et al. (2021) developed a simplified
simulation of an open water maritime environment. Participants executed
discrete movements their own ship around a water space while monitoring
the movement of several other ships, looking for one that expressed either of
two hostile behaviors. The variability in movement and distance of the hostile
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ship were manipulated, and results indicated that the task was quite difficult,
with accuracy hovering around 50% and declining with further distances and
more variability. There are clear parallels between those results and multiple
object tracking literature, which we now briefly review.

Multiple Object Tracking

In multiple object tracking (MOT) research, observers are asked to visually
track one or more targets in continuous motion among other distractors,
or non-targets. The targets may be readily identified, or the observer may
need to determine which objects are targets. After a period of time with the
objects moving, the observer is asked to identify the target(s) or respond to
a probe about a single object. A number of variables have been identified
as influencing the accuracy of MOT: the number of targets (e.g., Alvarez &
Franconeri, 2007; Drew et al., 2011; Pylyshyn & Storm, 1988), the number
of distractors (e.g., Bettencourt & Somers, 2009; Sears & Pylyshyn, 2000),
the distance between the objects (e.g., Bettencourt & Somers, 2009;
Franconeri et al., 2010), object speed (e.g., Holcombe & Chen, 2012;
Meyerhoff et al., 2016; Tombu & Seiffert, 2011; see Meyerhoff et al., 2017
for review), and variability in the movement of the objects (Gao & Scholl,
2011; Patton et al., 2021).

The paradigm in Patton et al. (2021) invoked variability and distance, but
the effect of set size (number of distractors) was not investigated. Although
the MOT literature provides clear evidence that increasing set size leads to
decreased accuracy, most of those studies lack an important element of real-
world applicability: evidence accumulation, a critical process in the study of
dynamic decision making.

Dynamic Decision Making

Dynamic decision-making paradigms typically involve evidence accumula-
tion through a series of observations before a final decision or diagnosis
is made (Edwards, 1962; Gonzales et al., 2017). These types of deci-
sions often occur in real-world situations, such as doctors running tests to
determine a diagnosis, firefighters determining the most likely place for a
forest fire to spread next, and military personnel determining the hostil-
ity of an entity. Such tasks often result in poor performance by humans
(Kersthold & Raaijmakers, 1997), due in part to the high demands on work-
ing memory to keep track of the multiple observations over time, and the
mental resources required to timeshare perception of newly arriving evidence
with current estimations of the state of the dynamic elements under surveil-
lance. It would make sense then, that a task that requires both multiple object
tracking and evidence accumulation would be quite difficult, and may see
multiplicative effects of the number of objects to be monitored (i.e., set size).
This challenge to human cognition would be detrimental in safety critical
situations.

Current Study

The current study aimed to understand the impact of set size in a dynamic
decision-making task. Using a modified version of the paradigm from
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Patton et al. (2021), participants moved their ownship around an open water
space. At the same time, varying numbers of ships moved around the same
space, and participants were tasked with identifying which ship was exhibit-
ing one of two potentially hostile behaviors: hunting or shadowing. Hunting
ships moved closer to the usership in a stepwise fashion until eventually
reaching it, and shadowing ships stalked the usership at a constant distance by
performing the same movements as the usership. These mimic real life hostile
behaviors (Lane et al., 2010; Liebhaber et al., 2002), and ensured participants
did not develop strategies unique to a single form of hostile behavior. All the
non-user-controlled ships on the screen exhibited slight variability in their
movements, as if they were impacted by tides, channels, or weather events,
as real ships might be. The simulated environment captures prototypical fea-
tures of US Naval displays such as the Aegis (Smith et al., 2004). Participants
were able to move their ship up to 35 times in discrete movements around the
open water area before being required to make a report of which ship was
hostile, and its behavior, although they could choose to report the hostile ship
before 35 steps (at as few as 6 steps), thereby accumulating less evidence.

Three hypotheses were developed:

1. Results from Patton et al. (2021) will be replicated. This includes the
interaction between behavior and distance on accuracy, such that as the
distance of the hostile ship from the user ship increases, there is a detri-
mental effect on hunting, but not shadowing; the low overall accuracy
around 50%; and the failure to accumulate sufficient information for
accurate decision making.

2. Accuracy will decrease with set size, as seen in many multiple object
tracking paradigms (e.g., Bettencourt & Somers, 2009; Sears &
Pylyshyn, 2000).

3. In seeking more evidence (more steps), participants will be insufficiently
calibrated to the changes in workload (number of distractors), as if they
are “overconfident” in their ability to manage the higher workload sit-
uations (Wickens et al., 2021; Moore, 2020; Horrey et al., 2015). In
Patton et al., (2021), participants generally used less than 20 steps out of
the 35 available, and their mean accuracy was only around 50%.

METHODS

Participants

This research complied with the American Psychological Association Code
of Ethics and was approved by the Institutional Review Board at Colorado
State University. Informed consent was obtained from each participant. Data
was collected from 35 people on Prolific, all of whom were located in the
United States.

Task

Participants viewed a computer screen (see Figure 1) containing a yellow
cross indicating their ship’s position, which they could control, and varying
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numbers (3, 6 or 9) of white circles with numbers which represented other
ships and were controlled by a software application. In Figure 1, there are
six ships (N = 6).

Figure 1: Screen exhibiting the experimental paradigm. Participants controlled the
yellow arrow while the white circles represent computer-controlled ships.

On each trial, the starting location of all ships was randomly generated.
The participant’s ownship could be moved in one of 4 directions (up, down,
left or right) by clicking the arrow keys at the bottom of the screen. These
arrow keys could only be clicked once per second to negate the potential
to create apparent motion through rapid keystrokes and also to mimic the
somewhat sluggish dynamics of real vessels on the water. The movement of
the participant’s ship on the screen was accompanied by an update of the
computer-controlled ships, although these ships were able to move diago-
nally. Thus, all ships moved at the same time, with at least a one second
delay in between movements.

On each trial, one of the computer-controlled ships was randomly selected
to act in a hostile fashion. The hostile ship’s movement was contingent on
the user’s movements. The hostile ship would do one of two things – hunt or
shadow. Hunting meant moving in a way such that it would eventually reach
the user ship. An algorithm computed which directional movement produced
the greatest reduction in distance between the two and moved the ship in
that direction as the user ship moved. Shadowing aimed to generally keep a
consistent distance from the user ship through mirroring their movements.
For instance, if the user moved left, the shadowing ship also moved left. If
the user ship moved towards the shadowing ship, the latter moved the same
direction as the user so the distance between the ships stayed the same. These
target movements occurred simultaneously with the usership movement that
triggered it.

The other ships (distractors) on the display moved independently of the
user’s actions. The behavior of the non-hostile ships was randomly assigned
other movement patterns. Some of the ships moved towards their own fixed
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target location, coded as an invisible point on the coordinate grid. Other ships
exhibited “patrol” behaviors, where they moved in a rectangular course that
covered either 1/3, 1/2 or 2/3 of the screen. The rectangular course could be
oriented in any direction and the ship could start at any point on the path.

Movements of all computer-controlled ships contained 25% noise, such
that, on average, every one out of four steps was not as expected for that
ship’s behavior. For example, if the hostile ship was shadowing, approxi-
mately every one out of four steps would not be the same as the user ship.
Similarly, the movement of the non-hostile ships departed from their assigned
behavior approximately once in every four movements.

Two initial practice trials demonstrated hunting behavior and shadowing
behavior, with no data collected. Unlike in the experiment trials, on each
practice trial the hostile ship was a different color and the hostile behavior
was announced when the trial started. This allowed participants to practice
working through a scenario but also illustrated the difference between hostile
behaviors.

On each trial, the participant was required to make at least five steps, but
no more than 35 steps, in whatever pattern they chose to probe the target’s
behavior, before determining which ship they believed was hostile. Once they
made a decision, they clicked an “End” button. The ship display froze, and
the participant indicated whether they were being hunted, shadowed, or nei-
ther. If they chose hunting or shadowing, the next question asked them to
choose which ship was exhibiting that behavior by clicking the radio button
that matched the ship number they believed was hostile. They then clicked
“submit” and were given feedback only on the correctness of their response,
but not on the correct target nor the hostile behavior exhibited on the trial.

Design

Participants completed 36 trials in three blocks of twelve trials each. Each
block had either three, six or nine computer-controlled ships, and each trial
would involve a randomly selected ship as the hostile target and a randomly
selected hostile behavior type. As a result, each trial had one hostile ship
and either two, five or eight non-hostile distractor ships. The blocks were
presented in a random order for each participant.

RESULTS

Accuracy

Overall, participants correctly identified the hostile ship 53% of the time.
Hunting ships were correctly identified 59% of the time, whereas shadowing
ships were only correctly identified 47% of the time (t(34)= 3.77, p < 0.001,
d = 0.46).

Number of Ships
When considering accuracy across set sizes, we use the metric of “accuracy
above chance.” The odds of a participant randomly guessing the correct ship
and behavior is much higher at 3 ships than at 9 ships. To remedy this, chance
accuracy of choosing the correct ship and behavior (16% for two distractor
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ships, 10% for 5 distractor ships, 8% for 8 distractor ships) was subtracted
from the raw accuracy score. When this metric (accuracy above chance) was
used, there was no main effect of number of ships (F(2,68) = 1.22, p = 0.30,
η2 = 0.005; Figure 2).

Figure 2: Accuracy above chance for each set size. Error bars represent one standard
error.

Distance

Figure 3 shows the percent of correct hostile ship identifications as a function
of starting distance between the hostile ship and user ship. Distance is cat-
egorized into four quartiles, with one being the closest distances and four
being the farthest. Due to the randomization of starting distance, not all
participants had trials with each behavior in each quartile, so a mixed lin-
ear model was run. There was a main effect of distance (estimate = −0.20,
SE = 0.01, t = −11.21, p < 0.001, 95% CI[−0.24,−0.17]). There was also a
main effect of behavior (estimate = −0.48, SE = 0.07, t = −6.79, p < 0.001,
95% CI[−0.62, −0.34). The interaction was significant (estimate = 0.14,
SE = 0.02, t = 5.49, p < 0.001, 95% CI[0.09, 0.19]), which can be seen
in the large decrease in accuracy as distance increases for hunting behaviors,
but not shadowing, replicating the effects found in Patton et al. (2021; 2022),
and confirming the first hypothesis.

Figure 3: Accuracy of hostile ship detection by the behavior of the hostile ship and its
initial distance from the usership. Error bars represent one standard error.
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The joint effects on accuracy of distance and the number of distractors
are shown in Figure 4. Here again, accuracy above chance was used. Because
the starting location of ships was randomized, the distribution of data in the
various conditions was uneven. Therefore, a mixed linear model was run.
Distance significantly affected accuracy above chance (estimate = −0.13,
SE = 0.02, t = −4.58, p < 0.001, 95% CI[−0.18, −.07]), with further
distances leading to lower accuracy. There was no effect of the number of
distractors on accuracy above chance (as seen in Figure 2; estimate = −0.01,
SE = 0.01, t = −1.15, p = 0.24, 95% CI[−0.04,−0.01]). There was also no
significant interaction (estimate = −0.002, SE = 0.005, t = −0.39 p = 0.69,
95% CI[−0.01, 0.008]).

Figure 4: Accuracy above chance by set size and the starting distance of the hostile
ship from the usership.

Number of Steps

The number of steps, or evidence accumulated, was compared across number
of ships. With three ships, participants averaged 15.3 steps, which was signif-
icantly lower than their average of 17.5 steps with six ships (t(34) = −3.65,
p < 0.001, d = 0.34), and this in turn was lower than the 19.8 steps when
there were nine ships, (t(34) = −3.68, p < 0.01, d = 0.36). All three of these
averages are far below the available 35 steps on each trial.

Averaged across all set sizes, the number of steps was strongly correlated
with accuracy (r(33)= 0.57, p < 0.001), congruent with the idea that as
participants collected more evidence, they were more accurate.

DISCUSSION

The current experiment set out to examine how changes to set size in a
dynamic decision-making task impacted accuracy of identifying a target. Par-
ticipants collected evidence by moving their own ship around a space while
examining the movement patterns of 3, 6 or 9 other ships, one of which was
a target.
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The current study replicated previous findings in this paradigm (Hypoth-
esis 1), including raw accuracy in identifying the hostile ship being higher
than chance, but far from optimal. The low accuracy was seen across all set
sizes, with highest accuracy at 61% - only about 50% higher than chance.
This is likely due to the demands on working memory. Evidence from mul-
tiple object tracking studies suggest there are demands on working memory
(Fougnie & Marois, 2009), and the current paradigm also brings in added
demands of dynamic decision making (Gonzales et al., 2017) by requiring
participants to accumulate evidence in the form of making movements of
their ship and comparing those movements to the other ships. This addi-
tional load of remembering the movements of each ship in comparison to the
usership likely contributed to the low accuracy.

Additionally, we replicated the interaction between behavior and distance.
The accurate detection of shadowing ships was little impacted by the start-
ing distance from the ownship in the way that hunting ships were, the same
interaction seen in Patton et al. (2021; 2022). We infer that this difference in
the distance effect is due to some fundamental properties of visual attention.
Previous work has shown that when objects create a polygon – in the cur-
rent case, this would be an imagined line of constant orientation and length
between the usership and the suspected shadowing ship – they are easier to
track (Meyerhoff et al., 2017). Furthermore, this tracking is unaffected by
the distance of separation because the perception of a constant orientation is
little affected by the length of the line (i.e., the vector connecting the ownship
to the shadowing ship which is the distance from ownship).

Hypothesis 2 examined the effect of set size on accuracy above chance,
and unexpectedly, there were no significant differences in accurate detection
of the hostile ship as set size increased. This is unlike previous work in mul-
tiple object tracking, which shows decreased accuracy as set size increases
(Bettencourt & Somers, 2009; Sears & Pylyshyn, 2000). It is possible that, to
some extent, this null effect of set size might have resulted from the overload
on working memory at even the smallest set size, imposed by the evidence
accumulation requirement. However, it is also possible that to some extent,
participants were able to adopt a strategy for evidence accumulation that
buffered the set-size penalties, as we discuss in the following.

Hypothesis 3 proposed that participants would be insufficiently calibrated
to the increase in difficulty (distractors), and this was partially supported
by the data. Overall, the current data showed a clear pattern for increas-
ing accuracy with more steps, which was also found in previous work
(Patton et al., 2021; 2022). This would suggest that if participants took more
steps, they may have been able to perform better. Participants did take sig-
nificantly more steps as the number of distractors increased, showing some
sensitivity, but their accuracy did not change to indicate calibration to the
amount of evidence that was needed to be accumulated for better perfor-
mance. It may be that participants were overconfident in their ability to cope
with the larger set size (Wickens et al., 2021), believing the small increase in
evidence was enough. It is also possible that working memory in this task is
already overloaded at as few as three ships, and hence additional evidence
simply could not be accumulated.
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These findings warrant more research but bring important real-world con-
siderations. Naval officers attempting to locate hostile entities in crowded
waterways are unlikely to have the luxury of time.With potentially hundreds
of ships around them, and their decisions being safety-critical, these results
indicate that a supporting aid should be implemented to increase their speed
and accuracy in these decisions. Previous work has shown that a visual aid
denoting the previous location of ships (an easy to implement “history trail”)
can improve performance slightly (Patton et al., 2022). The increase in raw
accuracy with smaller set sizes suggests that decluttering the radar screen to
only denote likely hostile ships may also be a viable starting point. Yet, there is
still a need to determine what type of aid could speed up the decision process
and optimize accuracy, especially with larger numbers of ships.

Limitations

The current paradigm aims to answer basic research questions with real-
world applications, which inherently creates limitations. The generalizability
of the current paradigm is limited by the use of naïve participants without
experience in maritime scenarios. Additionally, the paradigm was a simpli-
fied version of a real naval task, which eliminates some of the complexities
that could impact human behavior in the real world. However, by using a
controlled paradigm in a laboratory space, we were able to understand the
impact of set size in a dynamic decision-making task, which can be used as a
foundation for future research.

CONCLUSION

The current research provides insight into the demands on human operators
when completing a multiple object tracking task in a dynamic decision-
making setting. Low accuracy in identifying the hostile ship, but limited
changes by set size, suggest that working memory limitations make identi-
fying the hostile ship (target) difficult, but the ability to accumulate evidence
may be able to help offset the detrimental effect of increasing set size that
is typically seen in multiple object tracking scenarios. In real world con-
texts, where there can be dozens of objects to search through with tight time
constraints, there is a need to implement an aid that supports working mem-
ory demands to encourage faster evidence accumulation and more accurate
decisions.
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