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ABSTRACT

In this work, we propose a novel approach for object detection in marine environ-
ments using YOLOv7 (Wang et al., 2022) and Generative Adversarial Networks (GANs)
for synthetic data augmentation based on the opinions of a maritime expert. Our pro-
posed method combines the power of YOLOv7 for object detection and utilizes GANs
to generate realistic and diverse synthetic data and human information regarding the
missing data in our dataset, thereby increasing the size and variability of the train-
ing dataset. Experimental results demonstrate the effectiveness of our approach in
detecting various marine objects, including motor boat, sailing boat and seamark, in
both Simulated weather conditions and real-world environments. Our findings sug-
gest that combining YOLOv7 with GAN-based synthetic data augmentation provides a
powerful tool for object detection in marine environments, paving the way for further
research and practical applications in fields such as marine biology, oceanography,
and maritime surveillance.
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INTRODUCTION

Digitalization and increased autonomy in transportation have the potential
to create sustainable, safer, and more efficient service chains, contributing to
a better quality of life and global prosperity. Key technologies, including AI,
sensor fusion, and deep learning, are already available for autonomous ves-
sels. However, the challenge lies in effectively integrating these technologies,
particularly in the complex and dynamic maritime environment.

The demand for autonomous maritime systems has driven the integration
of machine learning to enhance intelligence, particularly in object detection
with computer vision. This task faces complexities due to factors such as
lighting, weather conditions, and waves. However, ensuring the accuracy
and trustworthiness of machine learning algorithms poses a significant chal-
lenge, primarily related to acquiring a well-prepared dataset. Creating a
detailed dataset covering diverse scenarios proves difficult, time-consuming,
and costly across various research areas. Data scarcity in maritime settings
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hampers progress, given the intricate and expensive nature of data collection
and labelling. Additionally, the relatively new concept of autonomy in this
domain limits the availability of relevant datasets, compounded by challenges
posed by diverse weather conditions during data collection.

In 2022, our aim was to build a comprehensive image dataset in Finland’s
maritime domain, consisting of 120,216 RGB annotated images. Evaluation
by a maritime expert revealed a lack of diversity in weather conditions within
our dataset, prompting the need to incorporate human opinions.

To overcome data scarcity, especially in varying weather conditions,
we propose a novel approach for maritime object detection. Our method
employs human-informed synthetic data augmentation using Genera-
tive Adversarial Networks (GANs), implemented through 4Sessions-Net
(4S-Net). This innovative strategy positively impacts labelled data and
addresses challenges related to dataset imbalance and insufficiency.

Synthetic data generation using GAN networks, such as 4S-Net, is a
cutting-edge solution to overcome these limitations. This paper introduces
4S-Net, which augments labelled data, positively impacting results. How-
ever, the synthetic data’s complexity may not match real-world scenarios,
necessitating model evaluation with real data.

The dataset, collected in the complex Finnish archipelago, was accurately
labelled and extended with synthetic data representing different weather con-
ditions. Comparative analysis involving three CNNs on the original and new
datasets, including GAN-generated data, reveals superior accuracy in models
trained on the new dataset.

In summary, while digitalization and autonomy offer promise, data
scarcity and environmental challenges in maritime settings hinder progress,
requiring a high level of understanding and contribution from domain
experts. Synthetic data generation through GAN networks based on expert
opinion, as demonstrated with 4S-Net, is a key solution resulting in improved
model accuracy. This approach not only addresses the limitations of real-
world data collection but also contributes to advancing the application of
machine learning in maritime autonomy. The results demonstrate significant
improvements in accuracy and reliability while simultaneously reducing the
cost and time of data collection through the incorporation of expert opinions
in dataset creation.

MARITIME AUTONOMY: COMPUTER VISION AND SYNTHETIC DATA

Themaritime environment presents a myriad of challenges that demand inno-
vative solutions to ensure safe and efficient operations, particularly in the
realm of autonomous boats. The integration of computer vision as a key
component in maritime navigation systems has emerged as a transformative
advancement, redefining the way we perceive and manage maritime activi-
ties. This paper delves into the paramount importance of computer vision in
autonomous boats within the maritime domain and explores the role of syn-
thetic data, generated through Generative Adversarial Networks (GANs), in
improving the performance and robustness of these systems, especially under
varying weather conditions (Goodfellow et al., 2014).
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Enhanced Situational Awareness

One of the foremost advantages of computer vision in maritime autonomy
is its ability to provide real-time, 360-degree situational awareness. Through
the utilization of cameras and sensors, autonomous boats can identify and
track objects, detect navigational hazards, and monitor the vessel’s surround-
ings with unparalleled precision. This heightened awareness significantly
reduces the risk of collisions, groundings, and other maritime accidents,
ultimately enhancing safety in the maritime environment.

Efficient Navigation

Computer vision systems empower autonomous boats with the capability
to navigate through complex and dynamic maritime environments. These
systems can identify navigational markers, track lanes, and assess the traffic
density, thereby enabling boats to optimize routes, make real-time course
adjustments, and avoid congested areas, leading to improved efficiency and
reduced fuel consumption.

Autonomous Collision Avoidance

The integration of computer vision enables autonomous boats to make
split-second decisions when encountering other vessels, obstacles, or even
unpredictable elements like debris or wildlife (Zhang et al., 2021). This
autonomous collision avoidance functionality significantly reduces the risk
of accidents and collisions, making maritime transportation safer and more
reliable.

Reduced Human Intervention

Computer vision systems lessen the dependence on human operators, which
is crucial for prolonged maritime missions or operations in remote and haz-
ardous environments (Molina-Molina et al., 2021). Autonomous boats can
function effectively with minimal human oversight, reducing operational
costs and increasing operational flexibility.

Leveraging Synthetic Data With GANs for Enhanced Performance

Despite the evident advantages of computer vision in maritime autonomy,
challenges persist, particularly in the context of varying weather conditions.
Traditional computer vision models often struggle when faced with adverse
weather, such as heavy rain, fog, or low light. Herein lies the significance of
synthetic data generation through GANs (Goodfellow et al., 2014).

Data Diversity

GANs can create synthetic data that simulates a wide range of maritime
weather conditions, from clear skies to stormy seas (Becktor et al., 2022).
This diversity in synthetic data helps train computer vision models to adapt
to different environmental scenarios, ensuring their robustness under adverse
conditions.
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Continuous Learning

By continually exposing computer vision systems to synthetic data, these
systems can learn and adapt over time. This dynamic learning process
allows autonomous boats to improve their performance gradually, even in
challenging maritime environments.

Cost-Efficiency

Acquiring real-world data that spans various weather conditions can be
costly and time-consuming. Synthetic data generation through GANs offers
a cost-effective alternative, enabling researchers and developers to amass
extensive datasets without the need for expensive field trials.

Testing and Validation

Synthetic data also facilitates rigorous testing and validation of computer
vision algorithms under controlled conditions (Lin et al., 2023). This ensures
that the systems can reliably handle real-world scenarios, thus bolstering their
readiness for deployment in autonomous boats operating in diverse maritime
environments.

In short, computer vision is an indispensable component in enhancing
maritime autonomy, ensuring safer and more efficient operations (Qiao et
al., 2021). Synthetic data, generated through GANs, plays a pivotal role in
addressing the challenges posed by varying weather conditions, equipping
autonomous boats with the adaptability needed to navigate the unpredictable
nature of the maritime environment effectively. As the maritime industry con-
tinues to embrace autonomy, the fusion of computer vision and synthetic data
promises to revolutionize maritime navigation and usher in a new era of safer,
more reliable, and efficient maritime transportation.

RELATED WORKS

In this section, we discuss about the related works based on two main
concepts: computer vision and GAN networks.

Computer Vision

Generic object detection aims to identify and classify objects within an image,
and label them with rectangular bounding boxes indicating the confidence of
their existence. There are two main categories of generic object detection
methods: those that follow a traditional object detection pipeline, generating
region proposals and then classifying each proposal into different object cat-
egories, and those that view object detection as a regression or classification
problem, using a unified framework to achieve final results (categories and
locations) directly.

The region proposal based methods mainly include R-CNN (Girshick,
2014), SPP-net (He et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-
CNN (Ren et al., 2015), R-FCN (Dai et al., 2016), FPN (Lin et al., 2017) and
Mask R-CNN (He et al., 2017), some of which are correlated with each other
(e.g. SPP-net modifies R-CNNwith a SPP layer). The regression/classification
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based methods mainly includes MultiBox (Chen et al., 2015), AttentionNet
(Xu et al., 2015), G-CNN (Zhang et al., 2017), YOLO (Redmon and Farhadi,
2016), SSD (Liu et al., 2016), DSSD (Liu et al., 2017) and DSOD (Liu et al.,
2017), which are widely used asmarine ship detectors. In general, the speed of
the single-stage method is obviously faster than that of the dual-stage method,
but the accuracy is close to or even better than that of the latter.

GAN Networks and Synthetic Data

Generative Adversarial Networks (GANs) are a class of deep learning mod-
els designed to generate synthetic data, particularly in the context of image
datasets. GANs consist of two neural networks, a generator and a discrimi-
nator, engaged in a competitive game.

The generator creates fake data samples, aiming to mimic the distribution
of real data. Meanwhile, the discriminator evaluates samples, attempting
to distinguish real from fake. Through adversarial training, the generator
continually improves, making its generated data more realistic.

This framework leverages a minimax game theory approach where the
generator aims to minimize the likelihood of being caught by the discrim-
inator, while the discriminator seeks to maximize its detection accuracy.
This dynamic equilibrium pushes the generator to generate data that is
increasingly indistinguishable from real data.

GANs find extensive use in synthetic data generation for image datasets,
as they can create realistic images that are useful for tasks like image synthe-
sis, style transfer, and data augmentation. Their capacity to capture intricate
patterns in data has made them pivotal in various computer vision and image
processing applications.

PROPOSED WORK

Our workflow consists of three stages: 1) exploring the current datasets by
an human expert to define the type of missing data based on different weather
conditions, 2) the high-resolution daytime translation (HiDT) (Anokhin et al.,
n.d.) model for the Daytime Translation task and 3) object detection using
the YOLO algorithm.

The HiDT

Object detection model is based on an encoder-decoder architecture. The
encoder decomposes an image into its style and content, while the decoder
generates a new image by combining the content from the original image
and the style from the style image. The two components are combined using
the AdaIN connection. The overall architecture of the model consists of a
content encoder Ec, which maps the initial image to a 3D tensor using con-
volutional down sampling layers and residual blocks. The style encoder Es is
a fully convolutional network that ends with global pooling and a compress-
ing 1x1 convolutional layer. The generator G processes the content tensor
with residual blocks containing AdaIN modules and then up samples it. To
create a realistic daytime landscape image, the model should preserve the fine
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details of the original image. To achieve this, the encoder-decoder architec-
ture is enhanced with skip connections between the down sampling part of
the encoder Ec and the up sampling part of the generator G. Regular skip
connections would introduce the style of the initial input into the output, so
an additional convolutional block with AdaIN is introduced to the skip con-
nections. This allows the model to preserve the fine details of the original
image while still generating a realistic daytime landscape image.

YOLOV7

YOLOV7 is a highly efficient and accurate object detection algorithm that
outperforms other state-of-the-art models by reducing the number of param-
eters and computational costs. It uses a faster and more robust network
architecture that integrates features more precisely, has a more stable loss
function, and is trained more efficiently. YOLOv7 can be trained on small
datasets more quickly and with less expensive computational hardware. The
algorithm is a single-stage detector that performs object classification and
detection simultaneously by looking at the input image or video once. It
has three important parts in its architecture: the backbone, neck, and head.
The backbone extracts features from the input images, the neck generates
feature pyramids, and the head performs the final detection as an output.
YOLOv7 introduces several architectural changes, such as compound scaling,
the extended efficient layer aggregation network (EELAN), a bag of freebies
with planned and reparametrized convolution, coarseness for auxiliary loss,
and fineness for lead loss.

Figure 1: This is some synthetic images; side by side, a) original image b, c, d) three
day images e, f) two sunset images and g, h, i) three night images.
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MATERIAL AND METHODS

The sensor used for capturing data was the Hikvision DS-2CD2T45G0P,
a wide agle camera. Our object detection dataset contains 298 images, of
which 199 are in the training set, 49 in the validation set, and 50 in the test
set. The task is to detect object categories such as motor boat, sailing boat
and seamark. Ground-truth bounding boxes are available, and the evalua-
tion protocol is based on standard mean average precision. The data includes
7,205 labelled objects, and upon examining Figure 1, it is evident that there
is a significant bias towards the motor boat class. This is not surprising,
as motor boats are the most common surface vehicle in maritime environ-
ment. However, this bias will impact the overall results, and it is important
to take this into account when evaluating the models. To address this issue,
the performance of the model on the most prominent classes will be taken
into account, such as by averaging the scores of the most common classes.

Figure 2: Dataset class instances.

Table 1. The number of data samples.

Dataset Train Set Valid. Set Test Set

Real 199 49 50
Real + Synthetic 3781 49 50

EXPERIMENTAL RESULTS

In this study, two maritime environment experts in the Nordic region exam-
ined the existing dataset and identified a need for additional data pertaining
to rainy and foggy conditions. Furthermore, our data collection did not
include scenarios during nighttime, sunrise, or sunset. In response to expert
feedback, we endeavored to generate synthetic data aligning with their
insights.
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We employ a high-resolution daytime translation (HiDT) model to gener-
ate synthetic data and use a pre-trained YOLOv7 model with COCO dataset
(Folds et al., 2008) as our object detection model. Our experiments used
NVIDIA Tesla V100 GPUs with 32GB memory. The explanations for each
step of the analysis will be discussed in the following subsection.

Synthetic Data Augmentation Using HiDT

We utilize the high-resolution daytime translation (HiDT) model to generate
synthetic data in different daytimes to augment our dataset. There are several
examples of images produced by HiDT that are presented in Figure 1, which
demonstrate excellent performance in our dataset. HiDT generates eighteen
different weather conditions; we only show eight items in Figure 1. As the
experiment of the object detection, we utilized YOLOv7 as an object detec-
tion model and analysed YOLO results with and without synthetic data. As
demonstrated in Table 2, including synthetic data can significantly improve
the mAP of object detection, achieving a mAP of 0.822. Additionally, we
tested our models on both real and combined (real and synthetic) datasets,
and it was evident in Figure 3 that the models trained on real and synthetic
data achieved outstanding results compared to those trained solely on real
data.

Table 2. This is mAP@0.5 results of YOLOv7 model.

Train Set Test Set mAP@0.5

Real Real 0.788
Real + Synthetic Real 0.822
Real Real + Synthetic 0.518
Real + Synthetic Real + Synthetic 0.774

Figure 3: Precision-recall curve for YOLOV7 model a) train on real data + synthetic data,
b) train on real data.
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DISCUSSION AND CONCLUSION

In this study, we present a practical and innovative solution to the challenge
of training a real-time maritime object detector with limited labelled image
data. Our approach combines the use of High-Resolution Daytime Trans-
lation (HiDT) for data augmentation and the YOLOv7 model for object
detection. To tackle the scarcity of labelled data for different weather con-
ditions and times of day, a common obstacle in supervised deep learning,
we employ HiDT to generate synthetic images. This not only expands the
training dataset but also contributes to the development of a real-time object
detector—a valuable tool across various applications. We trained a YOLOV7
model on the augmented dataset, achieving accurate detection with a Mean
Average Precision (mAP) of 0.822. This marks a significant improvement
over YOLO detection alone, demonstrating the effectiveness of our approach.
Our work presents an innovative strategy for enhancing object detection in
maritime environments.
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