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ABSTRACT

Human-robot collaborative assembly (HRCA) has become a vital technology in the
current context of intelligent manufacturing. To ensure the efficiency and safety of the
HRCA process, robots must rapidly and accurately recognize human assembly actions.
However, due to the complexity and variability of the human state, it is challenging to
accurately recognize such actions. Furthermore, with the lack of a large-scale assembly
action dataset, the model only constructed from the data obtained in a single assembly
scenario demonstrates limited robustness when applied to other situations. To achieve
rapid and cost-effective action recognition, this paper proposes a method for human
action recognition based on skeleton data and transfer learning. First, we screen the
action samples which are similar to assembly actions from the NTU-RGB+D dataset
to build the source dataset and reduce the dimension of its skeleton data. Afterwards,
the Long Short-Term Memory (LSTM) network is used for learning universal features
from the source dataset. Second, we use Microsoft Kinect to collect skeleton data of
human assembly actions as the initial target dataset and use the sliding time win-
dow method to expand its size. After aligning the data of two datasets, the gradient
freezing strategy is adopted during the transfer learning process to transfer the fea-
tures learned from the source dataset into the recognition of HRCA actions. Third, the
transfer model is validated through a small-scale reducer assembly task. The experi-
mental results demonstrate that the method proposed can achieve assembly actions
recognition rapidly and cost-effectively while ensuring a certain level of accuracy.
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INTRODUCTION AND BACKGROUND

In today’s smart factories, human-robot collaboration is increasingly applied
in product assembly processes due to its significant role in enhancing produc-
tion efficiency and assembly line flexibility. In industrial scenarios, typical
human-robot interaction methods include interactive interface (Dos Santos
et al., 2020), gesture recognition (Coupeté et al., 2015), speech recognition
(Bingol and Aydogmus, 2020) and etc. However, these interaction modes
require additional human actions, which are inflexible and hard to adjust.
This deficiency prevents operators to fully and effectively engage in the
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assembly tasks at hand. Considering the issues above, people began to allow
robots to proactively recognize and respond to the natural human actions
during assembly, known as human action recognition (HAR). A significant
challenge in this technology is enabling robots to accurately and quickly
recognize human actions.

In recent years, the rapidly developing deep learning technology has been
increasingly employed in HAR processes for its superior feature extraction
abilities. The action dataset used for feature extraction significantly influence
the final result of HAR. Aiming at diagnosing Autism Spectrum Disorder
(ASD) children, Zhang et al. (Zhang et al., 2021) developed an ASD dataset
and classified stereotyped actions of ASD children in their daily life. To design
a service robot’s action recognition system, Wang et al. (Wang et al., 2023)
proposed a multi-modal visual dataset named THU-HRIA dataset including
eight prevalent human actions in a restaurant environment. Nevertheless, in
the domain of HRCA, there isn’t an extensive dataset that comprehensively
considers diverse environment factors and camera settings, and includes var-
ious common assembly actions. Only using the data obtained in a single
assembly scenario to train models for action recognition poses issues as fol-
low: If the size of the dataset needed is too large, it entails significant time
and labor costs. Moreover, it is impractical to collect sufficient annotated
data from complex industrial settings (Li et al., 2021). If the size is too small,
it leads to poor robustness and is prone to over-fitting issues. The recognition
accuracy is profoundly impacted by the complexity and variability of human
states and alterations in camera settings and environmental factors.

Transfer learning is an effective approach to address the issue of sample
scarcity in target dataset. The transfer recognition model learns universal
features from daily actions similar to assembly actions in the source domain
and then further learns more accurate assembly action features from samples
in the target domain. Current researches using transfer learning for action
recognition show high levels of the efficiency and accuracy, demonstrating the
feasibility of constructing the HAR model through transfer learning during
the HRCA process (Wei et al., 2023, Xiong et al., 2020).

Therefore, this paper proposes an action recognition method for HRCA
based on skeleton data and transfer learning. Skeleton data has a lower
dimension, leading to faster model training and recognition speed. Moreover,
compared to RGB, which is also commonly used as HAR input, skeleton data
is less affected by environment factors and variations in human body size.
Finally, we present a validation of the method through a small-scale reducer
assembly task. The results of the task show that the HAR model trained by
this method can rapidly and cost-effectively recognize the assembly actions.

METHOD

As the framework of the method shown in Figure 1, the whole method can
be divided into three sections: A) Classification of assembly actions. In this
section, we classify the assembly actions into three categories according to
the assembly scenario: selecting parts, assembling parts, and checking; B) Pre-
training process. In this section, we collect the source dataset from the NTU-
RGB+D dataset, reducing the dimension and extracting the frame of the data.
Then the Long Short-Term Memory (LSTM) network is used to pre-train the
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HAR model. C) Transfer training process. In this section, we collect the target
dataset through an experiment, reducing the dimension and expanding the
size of the data by the sliding time window. After that, the transfer learning
model is trained by using the gradient freezing strategy.

selecting parts
A. Classification of assembly actions { assembling parts

checking
B. Pre-training process C. Transfer training process
Source dataset NTU-RGB+D Target dataset
v 2
dimension dimension
reduction [ reduction
Data processing ! Data processing
frame sliding time
extraction window
v 12
L Short. gradient
Pre-training model ong ST Transfer learing model freezing

Term Memory strategy

Figure 1: Method framework.

Classification of Assembly Actions

In this paper, we design a small-scale reducer assembly task as shown in
Figure 2. As the operator sits at a fixed workbench to assemble the parts,
it is only necessary to focus on the upper body of the operator. The classified
actions should cover all assembly actions and have significant differences of
characteristics between them. Under the premise of excluding actions irrel-
evant to the assembly process, the human actions during the small-scale
reducer assembly task are classified into the following three categories:

A) Selecting parts: The operator picks up parts from the parts area using
one or both hands. This action’s characteristics are obvious movements
of the operator’s hands and arms and minimal movement of the head
and torso.

B) Assembling parts: The operator installs the parts onto components in
the assembly area. This action’s characteristics are obvious movements
of the hands, limited movements of the arms, and almost no movement
of the head and torso.

C) Checking: The operator bends over to check whether the parts are
assembled correctly. This action’s characteristics are obvious movements
of the head and torso and almost no movement of the arms and hands.

Pre-Training Process

Obtaining Source Dataset
We choose the NTU-RGB+D dataset as the source dataset. The NTU-
RGB+D (Liuetal.,2020) dataset comprises 114,480 video samples involving



A Method for Human-Robot Collaborative Assembly Action Recognition 69

106 human subjects. For each video sample, the dataset stores the skeleton
data of human actions. Most importantly, the ages of human subjects in this
dataset are between 10 to 57 and the heights are between 1.3m to 1.9m, pro-
viding diverse human states and different human body size. Additionally, the
Microsoft Kinect used to collect the data is set at different angles, heights, and
distances, which is also beneficial for enhancing the generalization ability of
the HAR model. Based on the action classification above, we screen daily
actions similar to each of the three categories of assembly actions from the
NTU-RGB+D dataset, according to their respective action characteristics.

(b)

Figure 2: The classification of assembly actions. (a) Selecting parts; (b) assembling
parts; (c) checking.

Data Processing

In the skeleton data obtained from the NTU-RGB+D dataset, each frame
contains the data for 12 items of 25 human skeletal joints. The spatial
coordinate-related joint data is valued in meters. Given that the task focuses
only on the upper body assembly actions, the data for the 8 skeletal joints
of the lower body can be omitted. Only the 17 skeletal joints located on the
head, shoulder, elbow, arm, hand, and torso are retained.

Each row of data corresponds to the relevant data for a skeletal joint in that
frame. Only 7 items of data describing the spatial position of each skeleton
joint are retained and unnecessary skeletal joint data are removed as shown
in Figure 3. Finally, the skeleton data for each frame is reduced from a total
of 300 data (25 joints x 12 items) to 119 data (17 joints x 7 items). This
process reduces the dimension of each frame’s data to approximately 60%.
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Figure 3: Retaining necessary skeletal joints.
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In the NTU-RGB+D dataset, the action frame rate is 30 fps, while the cam-
era used to capture assembly action skeletal data outputs at approximately
7 to 8 fps. Therefore, for transfer learning process, we extract the frame of
the data from the source dataset. This step also quadruples the number of
samples in the source dataset.

Additionally, to accelerate the training speed of the model, the precision
of the skeletal data is rounded to four decimal places, which also means that
the data precision is 0.1 mm. Each action sample, stored as a sequence of
24 frames in 3 seconds, is annotated according to the three categories of
actions. The total number of samples in the final constructed source dataset
is 5,224. We set the ratio of the training samples to the validation samples to
4:1, so that the number of the training samples is 4,179, and the number of
the validation samples is 1,045.

Pre-Training Model
Due to the temporal correlation of the skeleton data, we use the LSTM
network to extract features of the skeleton data. We choose Adam as the
network’s optimizer and Negative Log Likelihood Loss as the loss function.
We evaluate the number of hidden states and the number of training epochs
by comparing the validation accuracy and loss values of different models,
which are shown in Figure 4. Hidden state is an important parameter related
to the network structure. Too many hidden states will cause over-fitting of
neural networks, while too few will reduce the adaptive ability. Training
epoch straightly influences the training speed and quality. Too many training
epochs will increase the training duration linearly, while too few will obtain
a bad convergence effect.
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Figure 4: Values of loss and accuracy in different (a) hidden states; (b) training epochs.

According to Figure 4(a), regardless of the hidden state we choose, the
final accuracy values of the validation consistently remain at a high level. For
a easy observation, values of the final loss are taken the negative logarithm.
As the number of hidden states increases, values of the minimum loss decrease
continuously. Considering both over-fitting problem and adaptive ability, we
set the number of hidden states to 64.
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According to Figure 4(b), in the early stages of training, there are sig-
nificant changes in values of accuracy and loss. As training around 20 to
30 epochs, values of accuracy and loss exhibit converging trends. From
approximately the 40th epoch onward, the values of accuracy and loss exhibit
oscillation within a certain range. To ensure training efficiency and HAR
performance, we set the number of training epochs to 50.

The rest of the important neutral network parameters are chosen as fol-
lows: the number of hidden layers is 2 and the initial learning rate is 0.001.
The pre-trained model achieves an accuracy of 98.4% on the validation
samples in the source dataset.

Transfer Training Process

Obtaining Target Dataset

We design an experiment to obtain skeleton data of assembly actions and used
a Microsoft Kinect sensor to record these actions. Two experimenters partic-
ipate in this experiment. Each person records three categories of assembly
actions and each category is recorded for 5§ minutes.

Data Processing

To transfer the action features from the source dataset to the new model, it
is essential to ensure that the data formats of the source and target datasets
are consistent. First, we use the same method to reduce the dimension of
the skeleton data collected by removing unnecessary skeletal joints and other
parameters. The processed data for each frame also includes 119 data, which
is consistent with the source dataset.

To address the issue of insufficient sample quantity in the target dataset
collected from the experiment, we use the sliding time window strategy. The
window length is set to 3 seconds, consistent with the sample length of
the source dataset, and the sliding step is set to 2 seconds. This approach
increased the number of the target dataset samples by 1.5 times.

In the same way, the precision of the skeletal data is rounded to four
decimal places and each action sample is annotated according to the three
categories of actions. The number of samples processed in the two datasets is
shown in the Table 1. The final ratio of samples between the source dataset
and the target dataset is approximately 6:1.The ratio of the training samples
to the validation samples is set to 4:1.

Table 1. The numbers of samples.

Total Samples Training Samples Validation Samples
Source dataset 5224 4179 1045
Target dataset 842 674 168

Transfer Learning Model
To transfer the features learned from the source dataset into the model, we use
a gradient freezing strategy. Under the premise of setting two hidden layers,
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we choose to freeze only the weights of the first layer. The weights of the
second layer and the fully connected layer are retrained. All neutral network
parameters are the same as the pre-training’s, except for the initial learning
rate which is fine-tuned to 0.0001. The transfer-trained model achieves an
accuracy of 96.3% on the validation samples in the target dataset.

CASE STUDY

To validate whether the model trained through the method above can accu-
rately identify the operator’s assembly actions, we construct a working
platform as shown in Figure 5. Parts and tools are placed on the left side of
the platform, while the collaborative robotic arm is positioned on the right
side. The operator sits in front of the working platform and completes the
small-scale reducer assembly task. Kinect is placed above the platform to rec-
ognize the operator’s actions, and the recognition results are transmitted to
the robotic arm as input.

Figure 5: Action samples of the operator and robotic arm. (a) Selecting parts;
(b) assembling parts; (c) checking.

We define the collaborative actions performed by the robotic arm based
on the recognition results for different human actions:

A) Selecting parts: The robotic arm picks up the part which this assembly
step needs and give them to the operator.

B) Assembling parts: The robotic arm picks up the tool which this assembly
step needs and give it to the operator or just returns to the beginning
position to avoid obstruction.

C) Checking: The robotic arm arrives at the beginning position.

The experiment results indicate that with the assistance of the robotic arm,
the operator can successfully complete the assembly task. In all three action
categories of selecting parts, assembling parts, and checking, the robotic arm
can accurately and swiftly perform the pre-designed collaborative actions.

Furthermore, we test another recognition model which is trained only
using samples from the target dataset. Although this model still achieves
a recognition accuracy of over 95% on the validation samples of the tar-
get dataset, it exhibits high recognition error rate during the assembly task.
Therefore, the comparison between the two recognition results indicates that
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using the method proposed in this paper can enhance the robustness of the
HAR model.

CONCLUSION

This paper proposes an HRCA action recognition method based on skele-
ton data and transfer learning. By categorizing assembly actions and creating
source and target datasets, an HAR model is constructed using a LSTM net-
work. Finally, the recognition speed and accuracy of the recognition model
are validated on a small-scale reducer assembly task. The experiment demon-
strates that this method can not only achieve assembly actions recognition
rapidly and cost-effectively, but effectively enhance the robustness of the
recognition model in the absence of a large-scale HRCA action dataset.

However, the assembly action classification mentioned in this method is
idealized, as it does not considerate transitional actions which are unrelated
to the assembly actions during the assembly process (Carrara et al., 2019).
Our model lacks the ability to handle such spontaneous actions. Furthermore,
skeleton data exhibits spatial-temporal correlation, but the LSTM network
only utilizes the temporal aspect. In future work, we plan to use graph con-
volution network, which can effectively extract both temporal and spatial
features of skeleton data, to improve our method.

To increase the efficiency of human-robot collaboration, many researchers
are exploring how to allow robots to proactively predict human intentions
and avoid collision. These abilities ensure that humans and robots safely and
efficiently accomplish collaborative tasks even when coexisting in narrow
spaces (Lyu et al., 2023). This will also be an important direction for our
future work.

ACKNOWLEDGMENT

The authors would like to thank the National Natural Science Foundation
(52175451 and 52205513).

REFERENCES

Bingol, M. C. & Aydogmus, O. 2020. Performing predefined tasks using the human-—
robot interaction on speech recognition for an industrial robot. Engineering
Applications of Artificial Intelligence, 95, 103903.

Carrara, E, Elias, P., Sedmidubsky, J. & Zezula, P. 2019. LSTM-based real-time
action detection and prediction in human motion streams. Multimedia Tools and
Applications, 78, 27309-27331.

Coupeté, E., Moutarde, F. & Manitsaris, S. 2015. Gesture Recognition Using a
Depth Camera for Human Robot Collaboration on Assembly Line. Procedia
Manufacturing, 3, 518-525.

Dos Santos, C. W., Filho, N. L. D., Espindola, D. B. & Botelho, S. S. C. 2020. Situa-
tional Awareness Oriented Interfaces on Human-Robot Interaction for Industrial
Welding Processes. IFAC-PapersOnLine, 53, 10168-10173.

Li, S., Fan, J., Zheng, P. & Wang, L. 2021. Transfer Learning-enabled Action
Recognition for Human-robot Collaborative Assembly. Procedia CIRP, 104,
1795-1800.



74 Wu et al.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y. & Kot, A. C. 2020. NTU
RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2684-2701.

Lyu, J., Ruppel, P., Hendrich, N., Li, S., Gorner, M. & Zhang, J. 2023. Efficient
and Collision-Free Human—-Robot Collaboration Based on Intention and Trajec-
tory Prediction. IEEE Transactions on Cognitive and Developmental Systems, 15,
1853-1863.

Wang, J., Zhang, T., Wu, X. & Zeng, L. 2023. A Dataset and System for Ser-
vice Robot Action Interaction Based on Skeleton Action Recognition. 2023 8th
International Conference on Signal and Image Processing (ICSIP).

Wei, C., Wang, C., Bai, S., Li, Y., Tian, X. & Zhou, L. 2023. Transfer Learning
Based Multi-Perception Safety Strategy for Human-Robot Collaboration. 2023
IEEE International Conference on Real-time Computing and Robotics (RCAR).

Xiong, Q., Zhang, J., Wang, P., Liu, D. & Gao, R. X. 2020. Transferable two-
stream convolutional neural network for human action recognition. Journal of
Manufacturing Systems, 56, 605-614.

Zhang, Y., Tian, Y., Wu, P. & Chen, D. 2021. Application of Skeleton Data and Long
Short-Term Memory in Action Recognition of Children with Autism Spectrum
Disorder. Sensors (Basel), 21.



	A Method for Human-Robot Collaborative Assembly Action Recognition Based on Skeleton Data and Transfer Learning
	INTRODUCTION AND BACKGROUND
	METHOD
	Classification of Assembly Actions
	Pre-Training Process
	Obtaining Source Dataset
	Data Processing
	Pre-Training Model

	Transfer Training Process
	Obtaining Target Dataset
	Data Processing
	Transfer Learning Model


	CASE STUDY
	CONCLUSION
	ACKNOWLEDGMENT


