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ABSTRACT

With the advancement of artificial intelligence technology, unmanned vehicle (UV) sys-
tems, including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV),
have been appearing in many scenarios with wide-ranging applications. It is a crucial
factor for enhancing human-computer collaboration efficiency to analyze the impact
of unmanned vehicle system combinations on operators. The research in this paper
presents the effects of different combinations of UAVs and UGVs (1TUAV + 1UGYV,
TUAV + 2UGVs, 2UAVs + 1TUGV, 2UAVs + 2UGVs) on searching performance and oper-
ator’s mental workload for accomplishing search tasks. Completion times for tasks
and subjective data with operators (N = 16) were collected by using Psychopy and
questionnaires, respectively. The results in this research indicate that binary growth
of controllable unmanned vehicles doesn’t improve the UV utilization rate, but costing
longer completion time and increasing operator’s mental workload. Since an exces-
sive number of unmanned vehicles could have a negative impact on task performance,
the insights in the paper are helpful for the design of unmanned vehicle systems and
the research of human-computer collaboration.
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INTRODUCTION

Unmanned vehicle systems have many increasing applications in logistics,
emergency rescue, and military, etc. such that it has garnered attention
towards the possibility of collaboration between unmanned vehicle system
(UAVs and UGVs) and humans (Long et al., 2018). The complementary
advantages among two types of unmanned vehicles can effectively enhance
the capability of unmanned systems in accomplishing complex tasks (Asadi
et al., 2020). However, constrained by technological limitations and ethical
issues in specific scenarios, unmanned vehicle systems will remain semi-
autonomous for a long time, requiring human command and monitoring
(Ghamry et al., 2016). An abundance of redundant information usually
is received during interaction between unmanned vehicle system and oper-
ator together with some suboptimal cooperations, which leads to certain
decreased performance and efficiency (Dadashi et al., 2013). Therefore,
it is important and crucial to investigate behavioral patterns of human
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interactions with unmanned vehicle systems for determining appropriate
composition of human-machine team, ensuring overall performance, and
prevent safety incidents.

Mental workload is defined as the information processing capacity or
resources consumed by an operator to meet system demands (Eggemeier et al.,
2020), which is commonly assessed by using a subjective, performance, and
physiological measurement (Cain, 2007). The collaborative performance is
strongly related to the level of operator’s mental workload (Parasuraman
et al., 2008). It is well known that mental underloading or overloading may
lead to some serious accidents (Hobbs & Lyall, 2016). The factors that affect
mental workload in the interaction between humans and unmanned vehicle
systems usually are categorized into four groups: environment, task, equip-
ment, and operator (Hooey et al., 2018). Task complexity and the number
of unmanned vehicles controlled have a significant impact on the opera-
tor’s mental workload, thereby making an influence on the control process
and task performance (Baber et al., 2011; Bommer & Fendley, 2015; Li
et al., 2022). Current researches on human-unmanned system collaboration
mainly focus on the allocation of tasks within human-robot teams, modes of
human-robot interaction, design of interaction interfaces, and assessment of
collaboration efficiency (Baber et al., 2011; Calhoun et al., 2018; Cummings
et al., 2014; Schmitt & Schulte, 2015). It is not entirely clear about effects of
task complexity and vehicle combinations on an operator in systems. Some
studies indicate that an operator can effectively control 4 to 5 unmanned vehi-
cles while a performance decrease occurs for more than 5 vehicles (Cummings
et al., 2007). In addition, the level of autonomy of unmanned vehicle systems
and control architecture also affect task performance and operator’s mental
workload, subsequently influencing the maximum number of controllable
unmanned vehicles (Cummings et al., 2014).

In this study, search tasks have been developed from the viewpoint of two
task complexity levels involving UAVs and UGVs combinations, and their
influence on both operator’s mental workload and searching performance
has been investigated through simulation. on the. The research results carry
significant implications for enhancing the operational efficiency, safety, and
reduction of resource wastage in unmanned vehicle systems. They also imply
some constructive suggestions for future autonomous interaction system
design and the promotion of unmanned vehicle systems.

METHOD

Participants

Sixteen students in total from Tsinghua University (Age: M = 25.44,
SD = 2.24), including 8 males and 8 females, participated in this experiment.
All participants took part in the experiment for the first time, had normal
or corrected-to-normal vision, and no color blindness or color vision defi-
ciencies. During the experiment, participants were informed that they could
withdraw at any time if they felt uncomfortable or unwilling to continue. The
entire experiment lasted approximately 45 minutes, and upon completion,
each participant received a remuneration of 60 RMB.



Combinatorial Effects of Unmanned Vehicles 85

Experimental Design

A two-factor repeated measures design (2 x4) was employed to investigate the
effects of task complexity level and unmanned vehicle combinations on oper-
ator’s task performance and mental workload. Task complexity was divided
into two levels: 4-targets search task (low-complexity) or 8-targets search
task (high-complexity), which indicates the number of targets searched in
each experimental scenario by each participant. Unmanned vehicle combina-
tions were categorized into four levels: TUAV + 1UGV, 1UAV + 2UGVs,
2UAVs + 1UGV, and 2UAVs + 2UGVs, corresponding the number of
Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)
that participants could operate in each scenario.

The search task in each scenario of research is simulated and requires par-
ticipants to control UAVs and UGVs via a mouse and complete the search,
identification, and report of all targets in the shortest possible time. PsychoPy
software was utilized for the construction of experimental scenarios and the
collection of performance data. The experimental platform, as depicted in
Figure 1, consists of three main panels: the top half is an image panel dis-
playing images captured by the unmanned vehicles; the bottom left corner
features a map panel showcasing a floor plan of the rooms and the current
positions of the unmanned vehicles; the bottom right corner is a control panel.
Participants can issue movement commands to multiple unmanned vehicles
simultaneously by clicking on the corresponding numbers on the scale, mov-
ing the vehicles to the positions denoted by the numbers on the map. During
vehicle movement, the image panel indicates “Position Moving”. The display
time for new images equals to the distance between two locations divided by
the speed of the unmanned vehicles (UAV: 12 m/s; UGV: 3 m/s).

Control Panel
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Figure 1: Unmanned vehicle system control panel.

The experiment included eight scenarios, equally divided into two differ-
ent task complexity level (4-targets or 8-targets). Each scenario comprised a
varied layouts house consisting of six rooms. Each target to be searched was a
cube with sides measuring 1 meter, available in four colors (red, yellow, blue,
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green). The top or side of each cube featured a capital English letter with an
underscore. The positioning of the targets, their colors, and the orientation
of the letters were randomly distributed across the scenarios.

Dependent Measurement

The dependent variables in the experiment included task performance and
subjective workload perception. Task performance was evaluated by the
recognition accuracy, completion time, total number of UV movements, and
the UV utilization rate. Subjective workload was assessed by using the NASA-
TLX, a widely employed mental workload rating scale with six dimensions:
mental demand, physical demand, temporal demand, performance, effort,
and frustration level.

Procedure

Firstly, participants were asked to sign an informed consent form and
complete a questionnaire including their basic demographic information.
Secondly, they were told the experimental tasks and the operation of the
experimental platform, and provided with four practice scenarios under
four different unmanned vehicle combinations. Thirdly, participants were
required to sequentially complete two sets of search tasks at different com-
plexity levels, each set comprising four scenarios using various unmanned
vehicle combinations. A Latin square experimental design was utilized for
two sets of tasks and four scenarios to eliminate learning effects. In each sce-
nario, participants were asked to make a mark at the corresponding positions
on a paper blank map with the color of each cube and the letter on its surface.
Finally, after completing each search scenario, participants were required to
complete a NASA-TLX rating scale to measure their mental workload during
the previous experimental scenario.

Data Analysis

Since each participant engaged in experiments across eight different scenar-
ios, the method based on repeated measures analysis of variance (ANOVA)
could be utilized to evaluate the differences of searching performance among
four unmanned vehicle combinations. For results with significant differences,
the Bonferroni correction was employed to calculate t-statistics and p-values
for each group in post-hoc tests. All analysis processes were conducted using
the statistical software SPSS 27, with the significance level set at 0.05.

RESULTS

Table 1 illustrates the task performance of participants across different
unmanned vehicle combinations under two task complexity levels. The
results of the recognition accuracy indicated that there were no significant
differences between the combinations for both 4-target (F (3,45) =0.508,
p =0.603, #2=0.033) and 8-target search tasks ((F (3,45) =1.231, p=0.309,
n>=0.076), with the accuracy rate of search exceeding 90% in all scenar-
ios. However, the completion time for tasks increased with the number of
unmanned vehicles in both 4-target (1UAV 4+ 1UGV: M = 86.77,SD = 39.52;
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1UAV + 2UGVs: M = 90.09, SD = 28.84; 2UAVs + 1UGV: M = 94.14,
SD = 25.93; 2UAVs + 2UGVs: M = 99.69, SD = 32.52) and 8-target
search tasks (1UAV + 1UGV: M = 175.43, SD = 55.28; 1UAV + 2UGVs:
M = 190.17, SD = 55.95; 2UAVs + 1UGV: M = 195.80, SD = 64.21;
2UAVs + 2UGVs: M = 209.84, SD = 65.94). Behavioral analysis of opera-
tors indicated that there was a significant difference in the total number of
UV movements across the four unmanned vehicle combinations levels during
completing 4-target search tasks ((F (3,45) =4.091, p = 0.019, ?=0.214).
Post-hoc analysis in Table 3 revealed that the TUAV + 1UGV combina-
tion had fewer search movements with respect to the 2UAVs + 2UGVs
combination (t (15) = —2.78, p = 0.084, d= —0.851), but there was no
statistically significant difference with respect to other combinations. Accord-
ing to results in Table 1, it was observed for UV utilization rate to have a
significant difference across combinations for both 4-target tasks ((F (3,45)
=7.387, p = 0.002, #>=0.330) and 8-target tasks ((F (3,45) =11.544, p
< 0.001, #2=0.435). Post-hoc analysis results (Table 4) demonstrated that
the UV utilization rate of the 1TUAV + 1UGV combination (4 Objects Task:
M = 0.83, SD = 0.20; 8 Objects Task: M = 0.76, SD = 0.14) was higher
than TUAV + 2UGVs (4 Objects Task: M = 0.64, SD = 0.24, t (15) = 3.92,
p = 0.008, d = 0.940; 8 Objects Task: M = 0.62, SD = 0.16, t(15) = 4.87,
p = 0.001, d = 0.913), 2UAVs + 1UGV (4 Objects Task: M = 0.65,
SD = 0.21, t(15) = 3.66, p = 0.014, d = 0.819; 8 Objects Task: M = 0.64,
SD = 0.18, t(15) = 3.81, p = 0.010, d = 0.678), and 2UAVs + 2UGVs (4
Objects Task: M = 0.62, SD = 0.23, t(15) = 5.69, p < 0.001, d = 0.891; 8
Objects Task: M = 0.54, SD = 0.20, t(15) = 5.19, p < 0.001, d = 1.115) for
each complexity levels.

Table 1. Task performance at different task complexity levels.

UV Combinations 4-Targets Search Task 8-Targets Search Task
M(SD) F-Value M(SD) F-Value
(p-Value) (p-Value)

Recognition Accuracy

1UAV + 1UGV 0.97(0.09) 0.508(0.603) 0.95(0.08) 1.231(0.309)
1UAV 4 2UGVs  0.97(0.13) 0.98(0.05)

2UAVs + 1UGV  0.98(0.06) 0.98(0.06)

2UAVs + 2UGVs  1.00(0.00) 0.93(0.10)

Completion Time

1UAV1UGV 86.77(39.52) 1.147(0.332) 175.43(55.28) 1.774(0.181)
1UAV2UGV 90.09(28.84) 190.17(55.95)

2UAV1UGV 94.14(25.93) 195.80(64.21)

2UAV2UGV 99.69(32.52) 209.84(65.94)

Total Number of UV Movements

1UAV1UGV 8.06(2.35) 4.091(0.019%)  12.94(4.89) 0.806(0.456)
1UAV2UGV 9.19(2.71) 14.13(4.91)

2UAV1UGV 8.44(2.92) 12.00(5.66)

2UAV2UGV 10.06(4.12) 12.38(4.59)

(Continued)
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Table 1. Continued

UV Combinations 4-Targets Search Task 8-Targets Search Task

M(SD) F-Value M(SD) F-Value
(p-Value) (p-Value)
UV Utilization Rate
1UAV1IUGV 0.83(0.20)  7.387(0.002%**) 0.76(0.14) 11.544
(<0.001%%*)

1UAV2UGV 0.64(0.24) 0.62(0.16)

2UAVIUGV 0.65(0.21) 0.64(0.18)

2UAV2UGV 0.62(0.23) 0.54(0.20)

*p<0.05, ** p<0.01, ***p<0.001

The analysis of the NASA-TLX scale revealed that there were signifi-
cant differences in mental demands among combinations during the 8-target
search tasks ((F (3,45) =7.174, p = 0.001, #>=0.324) (Table 2). In addi-
tion, the post-hoc analysis in Table 5 indicated that the mental demand for
the TUAV + 1UGV combination (M = 62.50, SD = 16.33) was marginally
or significantly lower than 1TUAV + 2UGVs (M = 69.69, SD = 19.96,
t(15) = —=2.93, p = 0.063, d = —0.440), 2UAVs + 1UGV (M = 70.31,
SD = 17.56,t(15) = —3.65,p = 0.014,d = —0.478), and 2UAVs + 2UGVs
(M = 75.50, SD = 15.28, t(15) = —4.25, p = 0.004, d = —0.796)
combinations. No other significant differences were found in the research.

Table 2. Mental demand scores at different task complexity levels.

UV Combinations 4-Targets Search Task 8-Targets Search Task
M(SD) F-Value M(SD) F-Value

(p-Value) (p-Value)

1UAVIUGV 47.19(19.83) 1.881 (0.170) 62.50(16.33) 7.174

(0001 ::~)

1UAV2UGV 48.44(19.81) 69.69(19.96)

2UAV1IUGV 51.56(21.74) 70.31(17.56)

2UAV2UGV 52.50(19.49) 75.50(15.28)

*p=<0.05, ** p<0.01, ***p<0.001

Table 3. Post-hoc tests of total number of UV movements.

Combination (I) Combination (J) Difference (I-]) t Value p-Value

4 Objects Task

1UAV + 1UGV 1UAV + 2UGV -1.125 -2.38 0.187
2UAV + 1UGV -0.375 -0.79 1.000
2UAV + 2UGV -2.000 -2.78 0.084

1UAV + 2UGV 1UAV + 1UGV 1.125 2.38 0.187
2UAV + 1UGV 0.750 1.16 1.000
2UAV + 2UGV -0.875 -1.26 1.000

(Continued)
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Table 3. Continued
Combination (I) Combination (J) Difference (I-]) t Value p-value
2UAV + 1UGV 1UAV + 1UGV 0.375 0.79 1.000
1UAV + 2UGV -0.750 -1.16 1.000
2UAV + 2UGV -1.625 -2.50 0.148
2UAV + 2UGV 1UAV + 1UGV 2.000 2.78 0.084
1UAV + 2UGV 0.875 1.26 1.000
2UAV + 1UGV 1.625 2.50 0.148
*p < 0.05, ** p < 0.01, ***p < 0.001
Table 4. Post-hoc tests of UV utilization rate.
Combination (I) Combination (J) Difference (I-]) t Value p-value
4 Objects Task
1UAV + 1UGV 1UAV + 2UGV 0.188 3.92 0.008**
2UAV + 1UGV 0.172 3.66 0.014*
2UAV + 2UGV 0.205 5.69 <0.001%**
1UAV + 2UGVs 1UAV + 1UGV -0.188 -3.92 0.008**
2UAV + 1UGV -0.017 -0.26 1.000
2UAV + 2UGV 0.017 0.33 1.000
2UAV + 1UGV 1UAV + 1UGV -0.172 -3.66 0.014*
1UAV + 2UGV 0.017 0.26 1.000
2UAV + 2UGV 0.034 0.79 1.000
2UAV + 2UGV 1UAV + 1UGV -0.205 -5.69 <0.001%**
1UAV + 2UGV -0.017 -0.33 1.000
2UAV + 1UGV -0.034 -0.79 1.000
8 Objects Task
1UAV + 1UGV 1UAV + 2UGV 0.146 4.87 0.001%**
2UAV + 1UGV 0.122 3.81 0.010%*
2UAV + 2UGV 0.223 5.19 <0.001%**
1UAV + 2UGV 1UAV + 1UGV -0.146 -4.87 0.001%**
2UAV + 1UGV -0.024 -0.69 1.000
2UAV + 2UGV 0.078 2.05 0.372
2UAV + 1UGV 1UAV + 1UGV -0.122 -3.81 0.010%*
1UAV + 2UGV 0.024 0.69 1.000
2UAV + 2UGV 0.102 2.08 0.339
2UAV + 2UGV 1UAV + 1UGV -0.223 -5.19 <0.001%**
1UAV + 2UGV -0.078 -2.05 0.372
2UAV + 1UGV -0.102 -2.08 0.339
*p <0.05, ** p < 0.01, ***p < 0.001
Table 5. Post-hoc tests of mental demand.
Combination (I) Combination (J) Difference (I-]) t Value p-value
8 Objects Task
1UAV + 1UGV 1UAV + 2UGV -7.19 -2.93 0.063
2UAV + 1UGV -7.81 -3.65 0.014*
2UAV + 2UGV -13.00 -4.25 0.004**

(Continued)
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Table 5. Continued

Combination (I) Combination (J) Difference (I-]) t Value p-value
1UAV + 2UGV 1UAV + 1UGV 7.19 2.93 0.063
2UAV + 1UGV -0.63 -0.24 1.000
2UAV + 2UGV -5.81 -1.67 0.698
2UAV + 1UGV 1UAV + 1UGV 7.81 3.65 0.014*
1UAV + 2UGV 0.63 0.24 1.000
2UAV + 2UGV -5.19 -1.77 0.581
2UAV + 2UGV 1UAV + 1UGV 13.00 4.25 0.004%**
1UAV + 2UGV 5.81 1.67 0.698
2UAV + 1UGV 5.19 1.77 0.581

*p <0.05,** p <0.01, ***p < 0.001

DISCUSSIONS

Carrying out the search tasks, participants failed to achieve 100% recogni-
tion accuracy in most scenarios except 2UAVs + 2UGVs combination for
4-target search tasks. This phenomenon suggests that recognition accuracy is
influenced by both task complexity and the combination of unmanned vehi-
cles. Under low-complexity scenarios, where the number of targets searched
is four, multiple unmanned vehicles can provide participants multidimen-
sional images of a single room, and assist them in determining the position,
color, and letters in each cube accurately. However, in high-complexity sce-
narios, some specific rooms may contain up to four cubes simultaneously. An
excess of unmanned vehicles increases the mental workload of participants
in processing spatial information (Cummings et al., 2007), which leads to a
decrease in accuracy for the 2UAVs + 2UGVs combination during 8-target
search tasks.

For the 4-target and 8-target search tasks, their completion time increased
to varying degrees with the increase of the number of units in the vehi-
cle combination. Under high-complexity tasks, the difference in comple-
tion time between the 1TUAV + 1UGV and 2UAVs + 2UGVs combi-
nations (AM = 34.41s) was greater than that in low-complexity tasks
(AM = 12.92s). More frequent shifts of attention from UAVs to UGVs cre-
ated a “disruption” effect and led to a phenomenon of change blindness,
which caused participants taking more time to regain situational aware-
ness (Parasuraman et al., 2009). Therefore, the efficiency of task execution
is influenced by an increased number of controllable unmanned vehicles,
and this effect is amplified as task complexity increases. Additionally, the
completion time is also affected by the composition of unmanned vehicles.
Compared to the TUAV + 1UGYV, an increase in the number of UAVs had a
greater impact on completion time (4-target search tasks: AM = 7.37s; 8-
target search tasks: AM = 20.37s) than an increase in the number of UGVs
(4-target search tasks: AM = 3.32s; 8-target search tasks: AM = 14.74s).
Since UAVs and UGVs operate for image capture by using distinct frames of
reference (Chen, 2010), the higher dimensionality of information provided
by UAVs might require participants to spend more time processing than that
for UGVs.
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The participants’ task execution strategies were also impacted by the num-
ber of controllable unmanned vehicles. In low-complexity 4-target search
tasks, an increase in the number of unmanned vehicles led to more inef-
fective movements and a lower utilization rate. The excess of information
required participants to spend more time on information integration, ulti-
mately increasing the task completion time. Subjective ratings of mental
workload suggest that, in high-complexity 8-target search tasks, participants
have used more cognitive resources to process the information within a sin-
gle image. The addition of unmanned vehicles did not improve the efficiency
of existing information processing but instead introduced more information
and led to increase mental workloads. Due to the rise in mental demand and
the switch cost, participants reduced the number of units they practically con-
trolled at one time. Suppose that the total number of movements remained
unchanged, then the completion time increased and corresponded to a lower
performance for searching task.

CONCLUSION

Advancements in artificial intelligence technology have introduced more
interactions between humans and unmanned vehicle systems. However, based
on literature reviews, it is not clear about the effect of UAV and UGV
combinations on the mental workload and search task performance. Experi-
ments have been designed in this paper with two complexity levels (search
tasks with 4 targets and 8 targets). Data on mental workload and task
performance have also been collected from 16 participants who completed
search tasks using four combinations of unmanned vehicles: TUAV + 1UGV,
1UAV + 2UGVs, 2UAVs + 1UGV, and 2UAVs + 2UGVs. The experimental
results indicate that a moderate increase in the number of unmanned vehi-
cles does not significantly affect the recognition accuracy, but reduces the
utilization rate of unmanned vehicles. This phenomenon leads to prolonged
task completion times, especially in scenarios of searching tasks with higher
complexity. Due to the information processing limitations, an increase num-
ber of unmanned vehicles may lead to more frequent shifts in attention. The
phenomenon of change blindness occurs during the transition between dif-
ferent types of unmanned vehicles, which causes the “disruption” effect of
attention and ultimately leads to an increase in the completion time of search-
ing tasks. The results in this study have significant practical implications for
optimizing the interface design of unmanned vehicle systems and enhanc-
ing the task performance of operators. They are also helpful for exploring
a better human-computer interaction technology under the era of artificial
intelligence.
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