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ABSTRACT

Recent advancements in artificial intelligence (AI), edge computing, and head-worn
augmented reality (AR) technology are bringing the prospect of sophisticated aided
target recognition (AiTR) systems from sci-fi to reality. Future AI algorithms could aug-
ment AiTR with real-time threat assessments (RTAs) that augment Soldier decision
making by providing a binary threat assessment alongside an estimate of epistemic
algorithmic uncertainty through the fusion and interpretation of multiple data sources.
Yet, visual representations of probability are often misinterpreted, which could have
consequences when relying on uncertain RTAs. To investigate, we designed simu-
lated uncertain RTAs in virtual reality (VR) using emerging probabilistic visualization
techniques, such as hypothetical outcome plots (HOPs; Hullman et al., 2015) and
discrete-outcome framing (Franconeri et al., 2021), and quantified their impact on
lethal force decision making. Specifically, we extended a VR decision making task from
our previous work (Gardony et al., 2022; Frontiers in VR), in which participants cate-
gorized a Soldier target advancing towards them as friendly or enemy based upon
their worn camouflage pattern, overlaying continuous- and discrete-outcome framed
uncertain RTAs and introducing gamification elements to encourage rapid decision
making. We found that when targets were easy to distinguish, participants were more
conservative when categorizing targets as enemy vs. friendly, reflecting a learned
decision-making heuristic. Importantly, under conditions of relatively low percepti-
bility (i.e., for far-away targets), our findings suggest trust in and reliance on RTAs
increased, as evidenced by attenuated conservativity that deviated from the default
heuristic. These findings contribute to the emerging literature on trust in AI and have
implications for the design and deployment of effective military human-AI interfaces.
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INTRODUCTION

The United States Army is developing Soldier systems that integrate artificial
intelligence and machine learning (AI/ML) to aid in the automatic detec-
tion, classification, recognition, and identification of potential threats. Such
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Aided Target Recognition (AiTR) systems can speed warfighter decisionmak-
ing across a range of mission sets by providing real-time threat assessments
(RTAs) in heads-up augmented reality displays while reducing engagement
timelines and cognitive workload (Schachter, 2020). Yet, current target clas-
sification algorithms perform poorly in open-set conditions characterized by
complex, dynamic environments that can be difficult or impossible to fully
capture and represent by a training dataset (Dhamija et al., 2020). Imperfect
AiTR can impair human performance by increasing false alarms and atten-
tional tunnelling and decreasing situational awareness (Geuss et al., 2019;
Matzen et al., 2020). A promising approach to mitigate these issues is to
analyse the AiTR algorithm’s epistemic uncertainty, or its uncertainty due
to lack of knowledge, and leverage it to either automatically reject classifi-
cation labels or visualize the degree of algorithmic uncertainty to the user
(Miller et al., 2021), which has been shown to reduce attentional tunnelling
(Cunningham et al., 2017). Thus, future Soldier AiTR systems could incor-
porate real- (or near-real) time estimates of algorithmic uncertainty in their
RTA visualizations to optimize human-AI integration. In the present study,
we developed a novel AiTR uncertain RTA visualization in a simulated aug-
mented reality (AR) display based on data visualization best-practices and
evaluated its impact on lethal force decision making in virtual reality (VR).

A central challenge to depicting uncertainty within AiTR visualizations
is that the concept of uncertainty is itself difficult to understand (Franconeri
et al., 2021; Matzen et al., 2023).Much research has demonstrated that map-
ping uncertainty to different visual encoding channels can lead to varying
interpretations (Franconeri et al., 2021; Padilla et al., 2021). For example,
MacEachern and colleagues (2012) found that fuzziness, location, colour
value, arrangement, size, and transparency were rated in descending order
of intuitiveness. However, depicting uncertainty within an AiTR bounding
box using these encodings is not straightforward and could affect the AiTR’s
visibility and perceptibility in ways that reduce its effectiveness.

Alternatively, an AiTR bounding box could be augmented with an adja-
cent uncertainty visualization, but this could increase visual clutter and/or
difficulty of interpretation. For example, common uncertainty visualizations
like density, box, and violin plots require prior experience with the visualiza-
tion and/or statistical training to accurately interpret and simple error bars
are frequently misunderstood even by experts (Hofman et al., 2020; Potter
et al., 2010). Hypothetical outcome plots (HOPs; Hullman et al., 2015) are a
promising alternative visualization technique accessible to general users that
present uncertainty as a set of animated frames that each depict a sample
from a probability distribution. HOPs improve estimation of distributional
information better than violin plots and error bars and can be applied flexibly
across real-world applications (Kale et al., 2019).

Another best practice approach to communicate probabilistic uncertainty
is through frequencies (e.g., 1 out of 10). Discrete-outcome (or frequency)
framing allows the viewer to interpret probabilities by counting discrete
visual elements and has been shown to more effectively communicate uncer-
tainty than percentages, especially for low numeracy individuals (Franconeri



88 Gardony et al.

et al., 2021; Peters et al., 2011). For example, in hurricane visualiza-
tion, ensemble plots improve risk assessment (Liu et al., 2019) and icon
arrays effectively communicate probability in health-care contexts (Garcia-
Retamero and Cokely, 2017). Taken together, this research suggests uncertain
RTAs implementing HOPs with discrete-outcome framing could be a promis-
ing approach to depict real-time epistemic algorithmic uncertainty in an AiTR
system that improves decision making and human-AI integration.

In the present study, we extended a VR lethal force decision making
(LFDM) scenario from our previous work (Gardony et al., 2022; Frontiers
in VR), in which participants categorized a single animated Soldier avatar
advancing towards them as friendly or enemy based upon their worn cam-
ouflage pattern. We overlayed uncertain RTAs modelled after HOPs, above
a simulated AiTR bounding box using continuous- and discrete-outcome
framing and introduced gamification elements to encourage realistic and
rapid decision making. We predicted introducing uncertain RTAs would
improve lethal force decision accuracy and that discrete-outcome RTAs
would perform best overall.

METHODS

Participants

Thirty-six active-duty Soldiers (Mage = 23.28, SDage = 5.28, 7 Female) vol-
untarily participated. Human use approvals were reviewed and approved by
the United States Army Combat Capabilities Development Command Soldier
Center Human Research Protection Program Office and the Tufts Univer-
sity Institutional Review Board. Written informed consent for participation
was not required for this study in accordance with the national legislation
and the institutional requirements. All participants possessed 20/30 binocu-
lar distance visual acuity or better as determined by the Snellen eye chart and
normal colour vision as determined by the Colour Vision Testing Made Easy
test (Cotter et al., 1999).

Materials

For full details of our virtual reality (VR) LFDM scenario, including technolo-
gies used and metrics collected, we refer the interested reader to our previous
publication (Gardony et al., 2022). Below we provide a brief overview of the
scenario and describe modifications we implemented for the present study.

A LFDM trial consisted of a single Soldier avatar (i.e., target) briskly walk-
ing toward the participant in an urban corridor in VR. The target emerged
from the corridor’s left or right side from either a far starting (spawn) location
(75m) or a near location (50m), which manipulated its perceptibility. Par-
ticipants discriminated between friendly/enemy targets based on their worn
camouflage pattern which was parametrically mixed between a friendly and
enemy pattern, affecting the informational content of the target stimulus. Par-
ticipants also monitored the windows of nearby buildings for the appearance
of a single non-combatant civilian, a secondary task designed to increase cog-
nitive load. During each trial, a simulated AR bounding box surrounded the
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Soldier target. Depending on the (within-participants) experimental block,
participants either saw this baseline “Box” AiTR alone or with an uncer-
tain RTA visualization included above it. Across blocks, bounding boxes
also erroneously overlayed some civilians but these spurious overlays did not
include RTA visualizations. Figure 1 depicts an example trial from the LFDM
scenario (A) and example Soldier targets with mixed camouflage patterns (B).

Figure 1: Example LFDM scenario trial from the box (baseline) condition. Arrows
depict the four possible soldier target spawn locations and the four possible secondary
target spawn locations. (B) Example soldier targets in the six possible blended camou-
flage patterns (left to right: 100% enemy, 65% enemy, 51% enemy, 51% friendly, 65%
friendly, 100% friendly. (C) Example uncertain RTA visualizations (top row: discrete
framing, bottom row: continuous framing).

In the present study, we modified the LFDM scenario to address three lim-
itations. First, we increased secondary task difficulty by removing movement
jitter of the peripheral non-combatant civilian. Second, we modified the sce-
nario and introduced gamification to encourage rapid and realistic decision
making by (1) reducing the far spawn location distance from 100m to 75m,
(2) including a low-probability (0.5%) of any trial ending prematurely (i.e.
enemy Soldier shoots, friendly Soldier disappears), (3) displaying onscreen
accrued points that reflected primary and secondary task performance.

AiTR Conditions

In addition to the baseline “Box” condition, we evaluated two simulated
uncertain RTA visualizations. These visualizations dynamically displayed
an uncertain real-time threat estimate of the Soldier target, ranging from 0
(“100% friendly”) to 100 (“100% Enemy”). The visualization was updated
and displayed continuously (10 Hz) based on an underlying stochastic algo-
rithm that increased the accuracy and decreased the uncertainty of the current
RTA as the target advanced. In the continuous-outcome framing condition,
a horizontal progress bar was filled in proportion to the current RTA. For
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example, if the current RTAwas 75% then 3/4 of the bar would be filled. The
discrete-outcome framing condition displayed a row of 10 dots. The current
RTA was rounded to the nearest 10% and the corresponding number of dots
was filled in proportion. For example, RTA = 75% would translate to 8/10
dots full while RTA = 33% would translate to 3/10 dots full. Figure 1, panel
C presents example uncertain RTA visualizations.

Procedure

The procedure was identical to our previous study. Participants completed
three blocks in a single study session, box (baseline), continuous-outcome
framing, and discrete-outcome framing, in counterbalanced order. The study
took about 1.5 hours to complete.

RESULTS

Data Filtering and Analysis

Prior to data analysis, we removed poor quality datasets in a principled
manner. We first removed four participants due to experienced discomfort,
very poor task performance, or incomplete data collection. Next, using the
eye tracking data, we removed data blocks where participants were notice-
ably drowsy. Extant research shows that percentage of time with eyes closed
(PERCLOS) is associated with drowsiness (Ftouni et al., 2013) so we approx-
imated PERCLOS using the VR headset’s gaze status metric and removed
blocks where participants’ gaze was invalid for > 10% (6s) of any 1-minute
time window. This procedure removed 16 blocks, including three additional
participants. 29 (Mage = 23.65, SDage = 5.31, 6 Female) participants were
ultimately included in the analysis. Lastly, again leveraging our eye track-
ing data, we removed individual trials where participants did not look at the
advancing Soldier target within the first 5 seconds of the trial (< 0.1% of
trials).

We used R to conduct all statistical analyses. Specifically, we fit a Bayesian
generalized linear mixed models (GLMMs) using the brms R package
(Bürkner, 2017) and used the emmeans package (Lenth, 2020) for follow-up
pairwise comparisons. For statistical inference, we report the Region of Prac-
tical Equivalence (ROPE), Probability of Direction (PD), and 95% Highest
Density Intervals (HDI).

Categorization Error Analysis

We examined categorization error of the advancing Soldier target in the
LFDM scenario with a Bernoulli family GLMM using the default priors in
brms and set the ROPE to±1%. The model included four fixed effects: Camo
Clarity (CC: 51CC, 65CC, 100CC), Spawn Distance (SD: Far, Near), Par-
ticipant Response (PR: Enemy, Friendly), and Real-Time Threat Assessment
(RTA: Box, Continuous, Discrete) with by-participant random intercepts.

Categorization error differed between the CC and SD conditions (see
Tables 1 and 2). The analysis provided strong evidence that error rates were
highest for 51CC targets relative to 65 and 100CC and were higher for
far spawning targets relative to near. There was little evidence that RTA
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condition or participants’ responses themselves influenced categorization
error.

We next examined interactions, which revealed a conservative enemy cat-
egorization bias (CECB) where participants committed fewer errors when
categorizing enemy vs friendly targets with high informational content (i.e.,
100CC, see Table 3). The observed response trends in each CC condition
corroborated this finding. Overall, participants responded enemy 34% of
the time (66% friendly) for 100CC targets, 55% enemy (45% friendly) for
65CC targets, and 41% enemy (59% friendly) for 51CC targets. Further
analysis provided strong evidence that a CECB was evident for near but not
far spawning 100C targets. Specifically, we found that for near-spawn 100CC
targets, the CECBwas consistent across all RTA conditions. However, for far-
spawns, both RTAs eliminated the CECB effect which persisted in the Box
condition (see Figure 2).

Table 1. Categorization error estimated marginal means (EMMs) by camo clarity (CC)
and pairwise contrasts with 95% HDIs, % in ROPE (%R), and probability of
direction (PD).

CC EMM 95% HDI Contrast 1 95% HDI %R PD

51 0.48 [0.44, 0.52] 51–65* 0.18 [0.13, 0.23] 0 100
65 0.30 [0.26, 0.34] 51–100* 0.21 [0.16, 0.26] 0 100
100 0.27 [0.24, 0.30] 65–100 0.03 [−0.02, 0.08] 20 86

Table 2. Categorization error estimated marginal means (EMMs) by spawn distance
(SD) and pairwise contrasts with 95% HDIs, % in ROPE (%R), and probability
of direction (PD).

SD EMM 95% HDI Contrast 1 95% HDI %R PD

Far 0.40 [0.37, 0.43]
Near 0.30 [0.28, 0.33] Far–Near* 0.10 [0.05, 0.14] 0 100

Table 3. 100% camo clarity categorization error estimated marginal means (EMMs) by
participant response ([E]nemy, [F]riendly), spawn distance ([F]ar, [N]ear), and
RTA ([B]ox, [C]ontinuous, [D]iscrete) and interaction pairwise contrasts with
95% HDIs, % in ROPE (%R) and probability of direction (PD).

PR SD × RTA EMM 95% HDI Contrast SD × RTA 1 95% HDI %R PD

E N, B 0.10 [0.01, 0.22]
F N, B 0.34 [0.24, 0.44] E-F* N, B −0.23 [−0.38,−0.06] 0 99
E N, C 0.10 [0.02, 22]
F N, C 0.27 [0.17, 0.29] E-F* N, C −0.14 [−0.32,−0.01] 0 98
E N, D 0.05 [0, 0.14]
F N, D 0.28 [0.18, 0.39] E-F* N, D −0.23 [−0.36,−0.10] 0 100
E F, B 0.18 [0.06, 0.34]
F F, B 0.38 [0.28, 0.49] E-F* F, B −0.19 [−0.36, 0.01] 1 97
E F, C 0.39 [0.01, 0.22]
F F, C 0.39 [0.23, 0.44] E-F F, C 0.00 [−0.18, 0.20] 9 51
E F, D 0.33 [0.20, 0.47]
F F, D 0.37 [0.25, 0.49] E-F F, D 0.04 [−0.21, 0.15] 7 66
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Figure 2: Kernel densities of the estimated marginal means of the expected values
of the categorization error posterior predictive distribution by spawn distance, RTA,
and participant response for 100% camo clarity targets. Median point estimates (dots)
and 66% and 95% highest density intervals (HDIs) are also depicted. Inset frequencies
denote the number of observed responses for each response type.

DISCUSSION

In the present study, we investigated how uncertain real-time threat assess-
ments (RTAs) influence lethal force-decision making (LFDM) using virtual
reality. Participants categorized advancing Soldier targets as either friendly
or enemy based on their worn camouflage pattern that varied in perceptual
discriminability. Building on our previous study (Gardony et al., 2022), we
incorporated RTA displays that presented real-time uncertain threat informa-
tion using continuous- and discrete-outcome framing and introduced gamifi-
cation to encourage rapid decision making that better reflected real-world
LFDM. We found that under conditions of relatively high informational
content but low target perceptibility, both discrete- and continuous-framed
uncertain RTAs reduced conservative enemy categorization bias suggesting
trust in AI-enabled RTAs increases when targets are difficult to perceive.

To manipulate target perceptibility, we used two Soldier target spawn dis-
tances (far, near). As the Soldier advanced toward the participant, their camo
pattern became more perceptible (and thus less uncertain). To manipulate the
target’s informational content, we used three levels of camo clarity (CC; 51%,
65%, 100%) with greater CC having more informational content (and less
uncertainty). As expected, participants more accurately categorized 100CC
and 65CC targets relative to 51CC. Similarly, participants more accurately
categorized near vs far targets. Taken together, these findings demonstrate
that both stimulus perceptibility and informational content impacted decision
accuracy.
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Upon further inspection, we discovered an interaction where participants
tended to categorize high informational content (i.e., 100CC) targets as
friendly more often than enemy but this conservative enemy categorization
bias (CECB) was not evident for lower informational content targets (i.e.,
65CC and 51CC). This suggests that with greater informational content, par-
ticipants were more conservative when categorizing targets as enemy (i.e.,
greater CECB), reflecting a learned decision-making heuristic from their mil-
itary training (e.g., avoid friendly fire). Further investigation revealed that this
CECB effect was observed for both the near- and far-spawns for the Box con-
dition, suggesting that Soldiers exhibited the CECB when making decisions
based solely on their visual perception. However, when assisted by an uncer-
tain RTA, CECB was eliminated when target perceptibility was relatively low
(i.e., far-spawn targets). This suggests that when a potential target has high
informational content and high perceptibility, participants place greater trust
in their perception than the uncertain RTA visualization. However, when they
interrogate a high informational content target with low perceptibility, their
trust in the RTA increases, leading to deviation from default decision-making
heuristics (i.e., CECB).These findings contribute to the emerging literature on
trust in AI and have implications for the design and deployment of effective
military human-AI interfaces.

Limitations of our findings should be noted. In our effort to encourage
realistic and rapid decision making, we introduced several gamification ele-
ments which successfully reduced average response time (RT) in the LFDM
task from 15.7s (SD = 7.7, range = 2.8–29.3) in our previous study to 3.3s
(SD = 2.7, range = 0.2 – 18.56) in the present. Introducing gamification
also substantially reduced RT variability, indicating that participants’ RTs
were much more consistent. However, due to a regrettable coding error,
far-spawn target RTs had a ∼1s variable delay while no such delay was
observed for the near-spawn targets. This made RT analyses difficult to inter-
pret and were therefore omitted from analysis. Lastly, we acknowledge that
despite the introduction of gamification, laboratory research like the present
study cannot fully replicate the real-life lethal force decision making of real-
world military operations so the generalizability of our findings should be
interpreted with care.

CONCLUSION

The present study contributes to the growing literature on how aided target
recognition (AiTR) visual designs impact perception, cognition, and deci-
sion making. We explored how two simulated uncertain real-time threat
assessments (RTAs) designed to aid Soldiers in detecting threats when using
AiTR systems impacted lethal force decision making. Our findings suggest
that under conditions of relatively high target perceptibility, users preferen-
tially trust their own visual perception over uncertain RTAs. However, under
conditions of relatively low perceptibility, trust in RTA increases, leading to
decision making that deviates from default conservative heuristics. Further
investigation and refinement of AiTR visual designs will become increas-
ingly important as future Soldier AiTR systems are developed, refined, and
implemented for military applications.
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