
Human Factors in Software and Systems Engineering, Vol. 140, 2024, 59–66

https://doi.org/10.54941/ahfe1005038

A Definition of Inclusive Systems
Engineering
Sandor Dalecke

AG Cyber-Physical Systems, RPTU Kaiserslautern, Kaiserslautern, 67663, Germany

ABSTRACT

This paper provides the first definition of inclusive systems engineering, as well
as eight criteria we deem important for tools to be considered supporting inclusive
systems engineering. Inclusive systems engineering focuses on domain experts by
making systems engineering more approachable, reducing the need for communica-
tion between systems engineers and domain experts. To achieve this, we incorpo-
rate techniques of model-based systems engineering and agile software engineering
approaches.

Keywords: MBSE, Inclusive systems engineering, Systems engineering, Systems modeling
language

INTRODUCTION

With the need for more comprehensive and complex systems, which still need
to be able to adapt to new constraints and technological advances, systems
engineering has moved away from document driven development towards
more interactive or model based development. Both of these approaches focus
on minimizing the development of useless systems due to miscommunication
(Madni, 2018; Karban, 2011). Agile approaches focus on continuous com-
munication with stakeholders, whereas model based approaches focus on
developing comprehensive models first, against which the developed system
can be checked throughout the development. In order to include stakehold-
ers and domain experts even more, we propose inclusive systems engineering,
focusing on making the systems engineering process more approachable for
domain experts. To do so we expand upon the current systems engineering
definition given by INCOSE, as well as providing criteria on which a systems
engineering tool can be checked against to identify if it can be considered to
support inclusive systems engineering and in which areas it might be lacking.

This paper gives a very brief overview of systems engineering, followed by
a proposed definition for inclusive systems engineering. Afterwards, a list of
nine criteria is given, as well as, a brief explanation why we consider each
criteria to be important for inclusive systems engineering and the anticipated
benefit.

State of Systems Engineering

INCOSE defines systems engineering as “[...] a transdisciplinary and inte-
grative approach to enable the successful realization, use, and retirement

© 2024. Published by AHFE Open Access. All rights reserved. 59

https://doi.org/10.54941/ahfe1005038


60 Dalecke

of engineered systems, using systems principles and concepts, and scientific,
technological and management methods” (Incose, 2017).

Systems engineering has changed a lot in the last twenty years. Dealing
with ever more complex systems, the need to change functionality during
development, adapt to new developments, policies or needs, as well as focus-
ing more on continuous service systems results in new challenges for software
development and systems engineering. Communication between stakehold-
ers is often a bottleneck in these instances (Madni, 2018). This is especially
true for more task specific, often highly complex, systems, tailored towards
specific domains with unique requirements.

These requirements lead to incorporating agile approaches known from
software development, as well as shifting the focus towards model-based
systems engineering.

The following section will briefly discuss the intent of agile approaches in
software development, as well as, model-based systems engineering.

Agile Approach

In software development, the agile approach is nowadays an umbrella-term
describing a number of different practices moving away from a project
based development towards an iterative development method (Fowler, 2001),
focusing on small finished and deployed functionality leading to larger more
complex systems in smaller steps, instead of developing one, large system at
once. This approach has been incorporated by more and more companies and
scaled up to work for larger projects and development teams despite being
firstly intended for smaller groups (Uludağ, 2022). One key aspect of agile
software development is focusing on continuous communication between
teams and stakeholders to make sure the tasks are well understood and tech-
nologically feasible. Additionally, this enables easier incorporation of new or
changed functionality. However, this makes it difficult to maintain up-to-date
documentation and systems models, which are especially important for larger
systems which include a multitude of hardware and software components
(Kasauli, 2021).

Model-Based Systems Engineering

Model-based systems engineering(MBSE) on the other hand focuses espe-
cially on the use of models during the systems engineering process. According
to INCOSE MBSE is the formalized application of modeling to support
systems requirements, design, analysis, verification and validation activi-
ties beginning in the conceptual design phase and continuing throughout
development and later life cycle phases (INCOSE SE Vision, 2007).

MBSE also intends to reduce wasted time and money by implementing
wrong or useless features (Madni, 2018). Instead of focusing on an iterative
design to move away from the document based approach, which is especially
hard to manage with the ever increasing scale and complexity of systems,
the use of a comprehensive model is suggested. The model-based approach
should create clear, connected models which can be shared among share-
holders, achieving better communication and reducing the risk of useless



A Definition of Inclusive Systems Engineering 61

features due to miscommunication. This model needs to be updated in case of
major changes, but is intended to be checked against throughout the whole
engineering process.

However, large-scale models are hard to create perfectly, needing to
be revisioned, which is time-consuming and can have large repercussions
(Bucchiarone, 2020; Broy, 2019). In addition, policy changes or technological
advances can affect the validity of a model throughout the development.

Furthermore, MBSE is still a rather new approach, lacking a wide-spread
standardized methodology. Currently the OMG works to resolve this issue
by developing the Kernal Modeling Language (KerML) to provide a very
basic, easily extendable language definition as well as a more sophisticated
language, with many needed extensions already provided with the Systems
Modeling Language version 2 (OMG, 2017).

Inclusive Systems Engineering

In order to merge the MBSE and agile approach we propose inclusive sys-
tems engineering (ISE) by extending the systems engineering definition by
INCOSE.
Inclusive Systems Engineering is a transdisciplinary and integrative

approach to enable the successful realization, use, and retirement of engi-
neered systems, using systems principles and concepts, and scientific, techno-
logical and management methods with the specific focus on domain experts.
User guidance techniques, intuitive syntax and interactive approaches are
used to make the systems engineering process as approachable as possible
for non-systems engineering experts.

While not directly referring to the use of models in the definition, it
is highly recommended, being easier to communicate and understand for
domain experts, making models an obvious, but not necessarily exclusive,
starting point for inclusive systems engineering.

The INCOSE definition of Systems Engineering considers a transdisci-
plinary approach to systems engineering. This is obviously true, as systems
for countless domains are defined and built. However, we propose to broaden
this transdisciplinary aspect to make systems engineering more accessible to
domain experts, shifting the focus from transdisciplinary systems towards
transdisciplinary systems engineers. We consider this approach to be inclusive
systems engineering, not to be confused with systems engineering of inclusive
systems.

ISE is supposed to be an extension of systems engineering, providing
guidelines and suggestions to make systems engineering a more inclusive,
more approachable process. Additionally, tools following the ISE approach
can be used as a means of guiding domain experts towards classical sys-
tems engineering tools which provide additional functionality, or make tools
more approachable, allowing the users to choose when to use more complex
features themselves.

Metric to Determine Inclusive Systems Engineering

In order to evaluate existing and newly developed software engineering tools
if they can be considered to support ISE we propose eight criteria to be



62 Dalecke

checked. Table 1 lists these broad criteria and includes a suggestion how to
achieve the criteria and a list of anticipated benefits. Following Table 1 is a
brief discussion of each criteria.

Table 1. Criteria list for inclusive systems engineering.

Criteria Suggestion Benefit

Simple Syntax Limited number of keywords Reduce learning time
Low entry hurdle

Tool Independence/
Compatibility

Standardised SE basis Communication and Cooperation
across domains and tools

Knowledge Basis Existing Knowledge Basis Enable User Guidance Techniques
Automatic Code Generation

Version Management Version Control / Commit
System

Sharing of Models
Support Agile Methods

Code Generation Language Model for code
generation

Enable domain experts to create
code
Create complex systems from
informal description

Extendibility Basic solution
Provide means for extension

Extensions specifically designed
Common basis

User Guidance Recommender systems
Nudging Feedback

Lower entry
Domain expert focus

Easy Documentation Markdown documentation
Enable picture documentation

More comprehensive documentation
Easier knowledge transfer

Please note, that these criteria are research topics in their own right,
rendering the following descriptions necessarily superficial.

Simple Syntax

Systems engineering burrows from highly specific concepts well known from
programming languages. However, it’s not safe to assume domain experts
from other domains are familiar with these concepts. A simple syntax is
important to prevent confusion or overwhelming complexity.
Suggested approach: Burrowing from natural language in order to spec-

ify common relationships lowers the threshold for domain experts while still
providing tools to define many aspects of systems. More intricate relation-
ships can be used after domain experts become familiar with the systems
engineering process. Limiting the number of keywords follows the same rea-
soning, making sure new systems engineers are not hindered by an extensive
number of keywords which can be confused.
Anticipated benefits: A reduction in training time for a new tool can

be anticipated, as well as functioning as a low entry point, offering more
complex features at the users own pace.

Tool Independence / Compatibility

Systems Engineering isn’t a tool specific process in of itself. It can be facil-
itated greatly by using tools, however, which specific tool to use should be
ea choice left to the user. Different domain experts will likely be familiar



A Definition of Inclusive Systems Engineering 63

with different tools and will prefer similar tools to work with to build a sys-
tem. Keeping the systems engineering process tool independent is important
to allow for different tools most suited for a specific domain. Preferably, an
inclusive systems engineering process would be compatible with many differ-
ent tools and providing the ability to switch between multiple tools, as long
as no sole tool is suitable.
Suggested approach: A standardised systems engineering process or speci-

fied language as proposed with SysMLv2 for MBSE (OMG, 2017).
Anticipated benefit: A common standard is important to create compatible

tools and systems in a wide variety of domains, facilitating cooperation and
communication between domains.

Knowledge Base

A suitable knowledge base can store similar systems or parts thereof to be
reused or be used as a reference. Additionally, knowledge bases can be used
to communicate knowledge between experts of different domains. Further-
more, depending on the tool the systems themselves can be translated into
knowledge bases for future reference.
Suggested approach: Depending on the size and complexity of systems dif-

ferent knowledge bases can be chosen, for large and highly complex systems
the web ontology language (Guo, 2004; Wawrzik, 2022) can be explored.
Anticipated benefits: The most important benefit of a knowledge base is

facilitating other criteria of this list. Some user guidance techniques make use
of knowledge basis, enabling recommender systems and functioning as exam-
ple systems to faster and easier systems engineering. Furthermore, knowledge
bases can be used to be included in parts, reducing the need to redefine
common system parts.

Version Management

Version management is important when features are developed by distributed
groups and is important when sharing or iterating upon existing systems or
models.
Suggested approach: Many possible version management systems exist,

however, depending on the tool and intended use a version management
system can be integrated into a tool, making it easier to use.
Anticipated benefits: Version management is important to enable incom-

plete model and iterative development. Being able to communicate different
versions, integrating them and checking change history is important when
several groups work towards larger systems, integrating new parts iteratively.

Code Generation

Automated code generation has made impressive progress in the last couple
of years. By using informal description formalized code can be generated,
representing the specified system as an implementation that can be checked
for inconsistencies and errors. This is especially helpful for domain experts
with no prior knowledge in programming that are tasked to implement a
system formally.



64 Dalecke

Suggested approach: Recently, machine learning has been used to create
large models to automate complex programming tasks (Dehaerne, 2022).
These models use natural language descriptions to create code effectively.
Anticipated benefits: Using an effective automated code generation enables

domain experts with no prior programming knowledge to create complex
code. This gives domain experts tools a tool to better communicate or even
implement the systems they require.

Extendibility

As systems engineering is becoming more important in a multitude of
domains it’s impossible to provide a solution suited for everyone. Therefore,
it is important to provide a solution that can easily be extended to fit special
needs in specific domains.
Suggested approach: Providing a simple solution to be a basis with the

stated intension of becoming extended to suit different needs and provide
tools to create these needed extensions.
Anticipated benefits: An underlying standard can be extended, facilitating

the creation of specified extensions which are still operating on a common
basis to be able to communicate and cooperate across extensions.

User Guidance

User guidance can encompass many aspects. During the modeling process
the user can be assisted, using techniques such as nudging, persuasive sys-
tems design and recommender systems and automatic code generation. These
techniques facilitate the work with the tool. User guidance can also be imple-
mented before and after systems definitions, providing helpful feedback,
such as error messages with suggestions how to fix the error, comprehensive
tutorials and documentation.
Suggested approach: Nudging, Persuasive systems design and recom-

mender systems can all be incorporated into a systems engineering tool,
making it more approachable for domain experts and new users in general
(Dalecke, 2023).
Anticipated benefits: User guidance is used to make a systems engineer-

ing tool itself more approachable and guide users through the engineering
process, providing feedback, suggested next steps and guide towards more
comprehensive systems and documentation

Easy Documentation

The benefits of comprehensive documentation have been shown multiple
times, however, it’s still often something done insufficiently. Providing an
easy method to document is therefore crucial. Preferably this can be paired
with user guidance to motivate providing comprehensive documentation
(Forward, 2002; Plösch, 2014).
Suggested approach: The use of markdown language is widespread and

easy to use, enabling also the inclusion of images as documentation.
Anticipated benefits: Clear documentation can be used to communicate

systems parts to stakeholders and to enable users to find existing system parts



A Definition of Inclusive Systems Engineering 65

to include in their own, reducing the time spent to define common parts,
which is time that can be spent upon defining unique parts of a system more
comprehensively. Additionally, with the use of machine learning tools docu-
mentation, in combination with a knowledge base could be used to extract
formal systems definitions.

CONCLUSION

The increasing complexity of systems, as well as the need to respond to
new developments and policy has changed the systems engineering process
significantly. Multiple methods aim to reduce the time wasted developing
useless features by focusing on increased communication and involvement of
stakeholders and domain experts. Our approach further focuses on involv-
ing domain experts potential as systems engineers by making the systems
engineering process more approachable. We have provided a definition for
inclusive systems engineering, as well as a list of criteria against which systems
engineering tools can be checked to identify their inclusive systems engineer-
ing potential and with which lacking can be detected. Furthermore, we have
given a brief discussion on each of these specific criteria, providing sugges-
tions and expected benefits for the user, be it domain or systems engineering
experts.

FUTURE WORK

Currently, this work is based on anecdotal evidence from personal discourse
with industrial partners, as well as a small questionnaire conducted on stu-
dents, giving some insight on the preferred criteria, resulting in the proposed
inclusive systems engineering criteria. The work on SysMD as an inclusive
systems engineering tool will be used to further evaluate the inclusive systems
engineering approach. Furthermore, a more representative questionnaire is
planned to be conducted with systems engineers in the automotive domain.

Additionally, the proposed metrics will be used to evaluate not only SysMD
but also other commonly used systems engineering tools.

REFERENCES
Broy, M., 2006, May. Challenges in automotive software engineering. In Proceedings

of the 28th international conference on Software engineering (pp. 33–42).
Bucchiarone, A., Cabot, J., Paige, R. F. and Pierantonio, A., 2020. Grand challenges

in model-driven engineering: An analysis of the state of the research. Software and
Systems Modeling, 19, pp. 5–13.

Dalecke, S. 2023. ‘A review of user guidance techniques to enable ‘inclu-
sive’ systems engineering for domain experts. AHFE international. doi:
https://doi.org/10.54941/ahfe1004318.

Dehaerne, E., Dey, B., Halder, S., De Gendt, S. and Meert, W., 2022. Code generation
using machine learning: A systematic review. Ieee Access, 10, pp. 82434–82455.

Fowler, M. and Highsmith, J., 2001. The agile manifesto. Software development,
9(8), pp. 28–35.

https://doi.org/10.54941/ahfe1004318


66 Dalecke

Forward, A. and Lethbridge, T. C., 2002, November. The relevance of software doc-
umentation, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering (pp. 26–33).

Guo, Y., Pan, Z. and Heflin, J., 2004, November. An evaluation of knowledge base
systems for large OWL datasets. In International semantic web conference (pp.
274–288). Berlin, Heidelberg: Springer Berlin Heidelberg.

Incose.org. (2017). Systems Engineering. [online] Available at:
https://www.incose.org/systems-engineering.

INCOSE, S., 2007. Vision 2020 (INCOSE-TP-2004-004-02).
Karban, R., Weilkiens, T., Hauber, R., Zamparelli, M., Diekmann, R. and Hein, A.,

2011. Cookbook for MBSE with SysML. MBSE Initiative–SE2 Challenge Team.
Kasauli, R., Knauss, E., Horkoff, J., Liebel, G. and de Oliveira Neto, F. G., 2021.

Requirements engineering challenges and practices in large-scale agile system
development. Journal of Systems and Software, 172, p. 110851.

Madni, A. M. and Sievers, M., 2018. Model-based systems engineering: Moti-
vation, current status, and research opportunities. Systems Engineering, 21(3),
pp. 172–190.

Plösch, R., Dautovic, A. and Saft, M., 2014, October. The value of software doc-
umentation quality. In 2014 14th International Conference on Quality Software
(pp. 333–342). IEEE.

OMG.org (2017). SysMLv2 [online] Available at: https://www.omg.org/cgi-
bin/doc.cgi?ad/2017-12-2.

Uludağ, Ö., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C. and Matthes, F.,
2022. Revealing the state of the art of large-scale agile development research: A
systematic mapping study. Journal of Systems and Software, 194, p. 111473.

Wawrzik, F., 2022. Knowledge Representation in Engineering 4.0 (Doctoral disser-
tation, TU Kaiserslautern).

https://www.incose.org/systems-engineering
https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2

	A Definition of Inclusive Systems Engineering
	INTRODUCTION
	State of Systems Engineering
	Agile Approach
	Model-Based Systems Engineering
	Inclusive Systems Engineering
	Metric to Determine Inclusive Systems Engineering
	Simple Syntax
	Tool Independence / Compatibility
	Knowledge Base
	Version Management
	Code Generation
	Extendibility
	User Guidance
	Easy Documentation

	CONCLUSION
	FUTURE WORK


