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ABSTRACT

Human mind weaves visual experiences and cognitive processes together in its learn-
ing journey to build specific knowledge domains. In this study, we explore how prior
knowledge influences what we see and visualize, suggesting that our experience pro-
foundly shapes our perceptions and eye movements.102 graduate students (59 male
and 43 female) with age ranging between 21 to 34 years (mean age of 27.23 and a
standard deviation of 2.98) from different domain knowledge backgrounds were con-
sidered in this study. Participants were initially presented with the Raven’s Advanced
Progressive Matrix (RAPM) task set to ensure homogeneity in intellectual ability.
Thereafter, architecture and mechanical domain-specific tasks were presented in order
of increasing task complexity. Individuals’ eye movements were then analyzed to iden-
tify distinct eye patterns associated with varying expertise levels and prior domain
knowledge. Our findings reveal that there are significant differences in eye movements
across participants from various domains. Participants with prior domain knowledge
(experts in the task) exhibited more efficient information processing with fewer fixa-
tions and shorter scanning durations than novices performing the same task. Results
show that significant eye metrics such as Total Time Duration, Total Dwell Time, Num-
ber of Fixations, and Average Fixation Duration exhibit significance in distinguishing
individuals across different domains, each manifesting at distinct time intervals. In
addition, this research systematically analyzes the visual scanning process during
problem-solving by individuals of different domain specializations. Further, the use
of machine learning models to classify novice participants from experts based on eye
markers is reported. Our experiments show as high as 85% accuracy in classifying par-
ticipants with domain knowledge against those who do not have domain knowledge
in a domain-specific task.

Keywords: Eye-tracking & oculometrics, Domain knowledge, Visual perception & cognition,
Task-specific evaluation

INTRODUCTION

Learning is a dynamic process through which individuals gain new insights,
abilities, or comprehension via study, direct experience, or instruction (Fyfe,
Rittle-Johnson, 2016) (Zhao et al., 2021). Visual perception is central to
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this learning journey, which is an essential channel for acquiring knowl-
edge (Kiefer et al., 2017). The impact of visual inputs in crafting mental
models and notions plays a crucial role in improving the storage and recollec-
tion of information (Gegenfurtner et al., 2011). The intricate bond between
seeing, learning, and the accrual of knowledge highlights the need to incor-
porate visual aspects in learning methodologies (Aatrai et al., 2023). The
transition from learning to knowing is absorbing, embodying, and apply-
ing insights gained (Lin and Murphy, 1997). This progression from the
reception of information, through its embedding into memory, comprehen-
sion of its significance, and eventual application, embodies a sophisticated
synergy of cognitive functions (Aatrai et al., 2023). This transformation
converts acquired data into valuable, actionable knowledge (Johnson et al.,
2017). Visual perception is pivotal in this educational voyage, where combin-
ing visual inputs with cognitive tasks enriches and expands understanding.
Recognizing the vital role of visual components in educational settings is
imperative for augmenting learning and retention (Charles, 2000). Within
cognitive research, the advent of eye- tracking technology has pinpointed
critical visual indicators associated with expertise and knowledge. This tech-
nology allows observing and analyzing where and how long one’s gaze lingers
on specific points, offering profound insights into cognitive processes across
various tasks (Tien et al., 2014).

Eye-tracker gives us the eye movements that reveal how individuals with
varying degrees of expertise engage with visual information, showing that
experts often process information more efficiently (Körner and Gilchrist,
2004). Experts show fewer fixations and shorter scanning times than novice
solving the same problem-solving task (Aatrai et al., 2024). In contrast,
novices tend to explore more, indicated by a varied eye movement pattern,
suggesting a less efficient approach to processing visual stimuli. Significant
gaps remain despite advancements in using eye-tracking to study knowl-
edge and expertise. There is a pressing need for more detailed research
that explores how these visual indicators interact with cognitive processes
across various expertise levels and task complexities. These investigations
can further deepen our understanding of how expertise affects visual atten-
tion and inform the development of specialized training and interventions
across diverse cognitive fields.

Our research delves into the nexus between eye movement patterns and
domain-specific knowledge by scrutinizing the visual strategies of 102 grad-
uate students across diverse disciplines. Leveraging eye-tracking technology
and machine learning algorithms, we meticulously analyzed the nuances of
how visual attention shifts with varying expertise. We aim to explore the
following objectives in this research work.

(1) To determine if there are any significant differences in visual perception
strategies and eye movement patterns between individuals with domain-
specific knowledge (expertise) and those without (novice) by analyzing
eye parameters.

(2) To find out whether the eye parameters that differentiate the experts
from the novice are consistent over different time intervals.
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(3) To exploit the usage of machine learning models in classifying individu-
als as novices or experts within their domains based on eye parameters
so obtained.

The rest of the paper is organized as follows. A detailed explanation of
experimental design, data preprocessing, and feature engineering is presented
in Section 2. Further results are explained in Section 3. Section 4 presents a
detailed discussion of results, which is followed by the conclusion.

METHODOLOGY

The experimental design used in this study received its clearance from the
ethical committee of the institute (No. IIT/SRIC/DR/2019). 102 graduate stu-
dents (59 male–43 female ratio, with an age ranging from 21–34 years, where
average age is 27.23 and standard deviation is 2.98) from different knowl-
edge backgrounds (domain-knowledge groups) were considered in this study.
In specific 33 students from the Architecture Domain (Architecture group),
36 from the Mechanical Engineering Domain (Mechanical group), and 33
from diverse domains such as Humanities, Biosciences, and Computer Sci-
ence (further called Control group) participated in this task. Weighted gaze
of 85% and/or more was kept as the threshold to continue with the experi-
ment, and further it was assured that participants reported a normal vision
or a corrected-to-normal vision. Further these students had no record of
psychological or neurological issues in the past.

Figure 1: The figure shows a detailed visual map of the experimental design used in
this research.

Eye-tracking device (Model: Tobii Pro X3-120) was initially calibrated
with the participant’s eyes and is positioned beneath an HP 24f display, with
a screen resolution of 1920 × 1080 pixels. Participants were seated at a dis-
tance of 60 cm from the eye-tracking device, in a noise-free and closed- door
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environment. Figure 1 gives a detailed representation of experiment’s design
discussed above.

Raven’s Advanced Progressive Matrix (RAPM)(Raven, 2003), a general
human intelligence test, has been used as preliminary assessment test, such
that we maintain a homogeneity in the group. This assures that further tasks
given in the experiments of same level of difficulty to all the participants,
and it is only the knowledge that people have acquired makes a difference in
solving the tasks. Before participating, all the participants provided informed
consent. The tasks were then presented to the participants. Two tasks were
considered in this experiments: (1) Architecture Domain-Specific Task Set
and (2) Mechanical Engineering Domain-Specific Task Set, where each task
set contains 4 questions related to the task under consideration. The architec-
ture domain-specific task is a domain-specific task for the architecture group,
used to assess oculometrics for the architecture group over the other two
groups. Similarly, the mechanical domain-specific task becomes a domain-
specific task for the mechanical group, helping us to analyse the oculometrics
of the mechanical group over the other two groups under consideration. The
order in which the task sets were presented to the participants is shown in
Figure 2.

Figure 2: Figure shows the order in which the task sets were presented to the
participants during the experiment.

Domain-Specific Task Set Description

The Architecture and Mechanical Domain-Specific Task Sets, each compris-
ing 4 questions, were designed to evaluate the domain knowledge of students
in architecture and mechanical groups respectively, using oculometrics. The
Architecture Task Set includes Visual Question Answering (VQA) questions
based on the floor plans of THE 42, Kolkata’s tallest building, focusing
on count, feature identification, and direction deduction, with increasing
complexity. Conversely, the Mechanical Task Set focuses on visuaspatial
understanding through object rotation identification, matching, and gen-
eralization, with questions varying in the number of rotations and axes
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involved. Both sets recorded participants’ eye movements and responses to
assess knowledge presence over other groups.

Data Preprocessing & Feature Engineering

Our Data Preprocessing & Feature Engineering methodology is divided into
two major stages (Kiefer, Giannopoulos, Raubal, Duchowski, 2017).

Figure 3: Figure illustrates the data preprocessing and the feature extraction stages
followed in this study.

Figure 4: The figure shows a detailed description of all eye-parameters used in our
study, as extracted in the feature extraction stage.

These stages are: (1) The Data Preprocessing Stage and (2) The Feature
Extraction & Analysis Stage. The preprocessing stage is aligned with the pro-
cedure proposed by (Kiefer et al., 2017). Each of these stages has 2 steps as
detailed in the subsections and Figure 3 visually guides us through the data
processing and feature engineering methodology used.

Stage I: Data Preprocessing

Data Filtering: Eye-tracker gives the gaze points ((x,y) coordinates, where
the participant has looked). Some of these gaze points correspond to eye-
blinks and out-of-focus gaze locations, which are of no use. These gaze points
are removed.
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Handling the Missing Data: There are gaze points other than out-of-
focus gaze and eye-blinks. These are classified as fixations and saccades
depending on the time spent on the gaze point and the rate of change in
the eye-movement respectively. The eye-tracker sometimes may lose out on
the fixation information, which is important to get deeper insights. We have
handled the missing gaze point data by replacing it with the mean of gaze
points ahead and following the missing gaze point of the same fixation is
used to replace the missing value.

Stage II: Feature Extraction & Analysis

Fixation Feature Extraction & Analysis: As mentioned, the eye- tracker
(Model: Tobii Pro X3-120) classifies the gaze points into fixations and sac-
cades. Fixations are those points where the gaze remains stable (in a smaller
radius) for a sustained amount of time. Fixation features are extracted from
the fixation gaze points collected by the eye-tracker during the experiment.
Figure 4 gives a detailed explanation of fixation parameters extracted in this
study.
Saccadic Feature Extraction & Analysis: A saccade is defined as the ratio

of distance difference (in pixels) between two successive fixations, calculated
by the Euclidean distance to the time difference between the same fixations
under consideration. The saccadic features used in this study were calcu-
lated through this method. Figure 4 gives a detailed explanation of saccadic
parameters extracted in this study.

Customized python programs to fulfil our use cases were used during the
data preprocessing and the feature extraction & analysis stages.

RESULTS

This section is divided into three phases, each uncovering the findings of the
objectives defined in Section 1. Following the Stage II, as detailed in subsec-
tion 2.2.2, a list of eye-parameters based on fixations, saccades, and dwell
features are obtained, as detailed in the Figure 4. These eye- parameters are
calculated over all the domain-specific task sets. The phase-wise analysis is
as detailed below.

Phase I: Detailed Domain-Specific Task Set Analysis

The main objective of Phase I analysis is to determine if there are any
significant differences between experts (those with domain-specific knowl-
edge) and novice (those without domain knowledge), in terms of their visual
scanning. For individual tasks present in the domain-specific task sets the
eye-parameters listed in Figure 4 were calculated. Particpants were divided
into 2 groups based on domain-knowledge existence in the task they are per-
forming. One with domain knowledge (Experts) and those without (Novice).
Analysis of Variance (ANOVA) over these groups was performed.
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Table 1. Table shows the significant eye-parameters that are important to differentiate
the people with and without domain-knowledge in a domain-specific task set
(At 95% CL).

Task Set Question
Considered

Significant Oculometrics Obtained Significance Value

Architecture
Domain-Specific
Task Set

Question 1 TotalTimeTaken (Secs),
TotalFixationDuration (Secs), NoF,
AverageFixationDuration (Secs),
TotalDwellTime (Secs), PSV (px/secs),
MSA (px), TSD (Secs)

0.0001, 0.0001,
0.0002, 0.0147,
0.0001,0.0221,
0.0236, 0.015

Question 2 TotalTimeTaken (Secs),
TotalFixationDuration (Secs), NoF,
AverageFixationDuration (Secs),
TotalDwellTime (Secs)

0.0022, 0.0013,
0.0021, 0.0049,

Question 3 AverageFixationDuration (Secs), SSV 0.0275, 0.0169
Question 4 TotalTimeTaken (Secs),

FirstFixationDuration (Secs),
TotalFixationDuration (Secs), NoF,
AverageFixationDuration (Secs),
TotalDwellTime (Secs), SSV, PSA (px)

0.0062, 0.0401,
0.0013, 0.0026,
0.0134,
0.0021,0.0439,
0.0058

Mechanical
Domain-Specific
Task Set

Question 2 TotalTimeTaken (Secs), NoF, MSA (px),
SSA, TSD (Secs)

0.0442, 0.0479,
0.0442, 0.0259,
0.0482

Question 3 PSV (px/secs), PSA (px), MSA (px) 0.0429, 0.0387,
0.021

Table 1 shows that there are significant eye-parameters with which we can
distinguish people who have domain knowledge with people who don’t have
domain knowledge.

Table 2. Table shows the significant eye-parameters that are important to differentiate
the people with and without domain-knowledge in a domain-specific task set,
analysed on specific time-intervals. Here we have considered quartiles of total
time duration to analyse the oculometrics (At 95% CL).

Task Set Question
Considered

Time
Interval

Significant Oculometrics
Obtained

Significance Value

Architecture
Domain-Specific
Task Set

Question 1 1st
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF, TotalDwellTime,
PSV, SSV, MSA, SSA, TSD

0.0002, 0.0001, 0.0001,
0.0001,
0.0085, 0.0132, 0.0094,
0.0088, 0.0229

2nd
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime,
PSV, SSV, PSA, SSA, TSD,
SSD

0.0001, 0.0, 0.0003,
0.0409, 0.0001,
0.006, 0.0248, 0.0025,
0.0047, 0.0136, 0.0227

3rd
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime,
MSA, TSD, SSD

0.0001, 0.0001, 0.0004,
0.0022, 0.0001,
0.0301, 0.0285, 0.0011

(Continued)
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Table 2. Continued

Task Set Question
Considered

Time
Interval

Significant Oculometrics
Obtained

Significance Value

4th
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime,
PSV, TSD, MSD, SSD

0.0001, 0.0, 0.0,
0.0293, 0.0,
0.0241, 0.0252, 0.0036,
0.018

Question 2 1st
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime,
SSV, MSA, SSA

0.0018, 0.0016, 0.0009,
0.0014, 0.0012,
0.013, 0.0088, 0.0017

2nd
Quartile

TotalTimeTaken,
FirstFixationDuration,
TotalFixationDuration,
NoF, TotalDwellTime, SSA,
SSD

0.002, 0.0369, 0.0017,
0.0039, 0.0017, 0.0001,
0.024

3rd
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime, SSD

0.0039, 0.0009, 0.0027,
0.0063, 0.0009, 0.007

4th
Quartile

TotalTimeTaken,
FirstFixationDuration,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime, SSD

0.0027, 0.0135, 0.003,
0.0047, 0.03,
0.0027, 0.0272

Question 3 2nd
Quartile

AverageFixationDuration 0.0024

Question 4 1st
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF, TotalDwellTime, PSA,
SSA

0.0095, 0.0027, 0.0021,
0.0035, 0.0193, 0.0141

2nd
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF, TotalDwellTime, SSD

0.0111, 0.0044, 0.0047,
0.0062, 0.0024

3rd
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF, TotalDwellTime,
PSV, MSV, PSA, SSA

0.0087, 0.0025, 0.0059,
0.0037,
0.016, 0.0205, 0.017,
0.0479

4th
Quartile

TotalTimeTaken,
TotalFixationDuration,
NoF,
AverageFixationDuration,
TotalDwellTime,
PSV, PSA, SSA

0.0095, 0.0021, 0.0123,
0.003, 0.0031,
0.0348, 0.02, 0.0058

Mechanical
Domain-Specific
Task Set

Question 2 1st
Quartile

TotalTimeTaken, NoF, PSA,
SSA, TSD

0.0333, 0.0168, 0.0397,
0.0066, 0.0197

2nd
Quartile

TotalTimeTaken, MSV, SSV,
MSA, SSD

0.0303, 0.0171, 0.0088,
0.0092, 0.046

3rd
Quartile

TotalTimeTaken, NoF,
TotalDwellTime, SPD, TSD

0.0243, 0.0202, 0.0442,
0.015, 0.0491

4th
Quartile

TotalTimeTaken, SSA, SSD 0.0375, 0.0299, 0.0138

Question 3 2nd
Quartile

PSA, MSA 0.0296, 0.0037
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Phase II: Domain-Specific Task Set Analysis Over Quartiles

Phase I is not sufficient to understand whether the significant eye- parameters
so obtained are consistent over different time intervals among the groups,
during which these tasks are solved. If the eye-parameters are consistently
significant over different time intervals while solving the problem to dis-
tinguish between experts and novice, then we can say that these consistent
eye-parameters are significant eye-markers to understand how the visual per-
ception of experts differ from those of novice. To investigate the same, we
divided the entire time duration that a participant has taken to solve the
task into quartiles. This helps to significantly investigate the decision-making
aspect varies between the two groups. Table 2 analyzes the same task set over
time intervals, using ANOVA.

Phase III: Expert vs Novice Classification Models

The results in the Phase I suggest that the eye-parameters of as TFD, FFD,
NOF, PSV, MSA, and TSD are significantly different for those who have
expertise in a domain as in comparison to those who lack it. Further the
studies done in the Phase II suggest that TTT, TFD, NoF, AFD and TDT are
consistent over quartiles in the Architecture task set, to distinguish between
experts and novice. Also, the saccadic parameter of MSA is important in the
Mechanical task set. The significant eye-parameters obtained in Phase II are
further used as features in the ML models of Decision Trees (Quinlan, 1986),
Support VectorMachines (Boser et al., 1992), and Random Forests (Breiman,
2001) to classify the experts from novice. Table 3 shows the testing accuracy
obtained in the classification task of classifying experts and novice for each
task considered in both of the task sets. Figures 5 & 6 help us in under-
standing the significance of features obtained by ANOVA and PCA through
SHAP (SHapley Additive exPlanations) analysis over the architecture and the
mechanical tasks respectively. The left hand side images show the significance
of individual feature corresponding to the 5 best features considered from the
Phase II analysis. These features were given to the Random Forest model for
expert vs novice classification. The hand side images shows the significance
of PCA over the 5 best features, further aiding in a better learning of the
random forest model.

Figure 5: Figures help us to understand feature significance using SHAP analysis for
expert (class 0) vs novice (class 1) classification. Left: Individual feature importance
from 5 best features; Right: PCA-enhanced learning with random forest on architecture
task question 1.
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Table 3. Table shows the testing accuracy obtained in the classification task using
state-of- the-art ML models. The significant eye-parameters as obtained in
the Phase - II analysis are used to differentiate the people with and with-
out domain-knowledge in a domain-specific task set, analysed on specific
time-intervals.

Task Considered Decision Tree Support Vector Machine Random Forests

Significant
Features of
Phase II

PCA on
Significant
Features

Significant
Features of
Phase II

PCA on
Significant
Features

Significant
Features of
Phase II

PCA on
Significant
Features

Architecture Task: Q1 52% 57% 57% 57% 52% 67%
Architecture Task: Q2 43% 62% 52% 52% 67% 67%
Architecture Task: Q3 62% 67% 62% 62% 67% 67%
Architecture Task: Q4 43% 67% 57% 57% 52% 62%
Mechanical Task: Q2 75% 80% 70% 70% 70% 85%
Mechanical Task: Q3 70% 65% 70% 70% 65% 70%

Figure 6: Figures help us to understand feature significance using SHAP analysis
for expert (class 0) vs novice (class 1) classification. Left: Individual feature impor-
tance from 5 best features; Right: PCA-enhanced learning with Random Forest on
Mechanical task question 1.

DISCUSSIONS & CONCLUSION

Our pivotal discoveries highlight that there exists visual strategy differences
between novices and experts. The results of Phase I analysis (subsection 3.1)
are tabulated in the Table 1. Table 1 shows that there are significant eye
parameters with which we can distinguish people who have domain knowl-
edge with people who don’t have domain knowledge. This address our first
objective. We find that there are fixation based markers such as TFD, FFD,
NOF are significantly different for those who have domain knowledge in
comparison with those who lack. Also we see that the saccadic parameters of
PSV,MSA,TSD are significant in both the tasks to distinguish between groups
with and without knowledge, stating that the searching pattern among those
who have knowledge is different from those who don’t.

Further to ascertain our study, Table 2 analyzes the same task set over time
intervals, using ANOVA, the Phase II analysis (subsection 3.2). In this phase,
the entire task duration is divided into quartiles to understand the decision-
making aspect of experts and to find how it varies from novice. This analysis
has helped us to see that the eye markers of TTT, TFD, NoF, AFD and TDT
are very significant in all the quartiles for all the questions in architecture
domain-specific task set. This further explores the possibility of coming up
with eye markers that represent a group having knowledge with those who
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lack knowledge. We also see that the saccadic parameter of MSA is signif-
icant in the mechanical domain-specific task set. This addresses our second
objective.

The distinct eye-markers corresponding to each task in a task set are fur-
ther used as important input features to the ML models, as detailed in Phase
III (subsection 3.3). The aim of the ML models is to classify the participants
into either of expert group (having domain-specific knowledge) and novice
group (those who lack the domain-specific knowledge required to solve the
task set). The testing accuracy of the same are as reported in the Table 3. It
is important to note that for each model, we have a column that reports the
testing accuracy when the model is trained on the best 5 significant features of
Phase II (Significant Features of Phase II) and the other column reports the test
accuracy of eachmodel after applying the dimensionality reduction technique
over the 5 best significant eye-parameters of Phase II (PCA on Significant Fea-
tures). We achieve as high as 85% accuracy to distinguish between the two
groups of experts and novice solving the same problem-solving task, solely
based on their eye movement, as reported in Table 3.

This research significantly advances our understanding of the role of
visual perception in learning, specifically through eye-tracking technology to
explore domain-specific knowledge. By revealing how eye-tracking data can
inform the creation of tailored educational environments, the study is a piv-
otal contribution to educational technology and methodology. It highlights
the potential of eye-tracking to provide deep insights into the visual strate-
gies of experts, offering a window into how individuals engage with and
solve problems within their domains. The findings demonstrate the value of
eye-tracking in developing indicators of knowledge and real-time

applications that can assess individual learning needs. Moreover, the study
illustrates the practical implications of these insights, suggesting avenues for
designing personalized learning tools and training programs that adapt to
individual visual strategies and task complexities.
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