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ABSTRACT

Industry 4.0 is a shift towards automation and data integration in manufacturing
and process sectors. However, manual material handling and repetitive operations
still cause significant physical strain on operators, leading to fatigue and exhaus-
tion. This fatigue not only hampers performance but also compromises production
quality and efficiency, potentially leading to human errors and accidents. Prolonged
exposure to physical fatigue can lead to conditions like chronic fatigue syndrome
(CFS) and work-related musculoskeletal disorders (WMSDs). Given these implica-
tions, safeguarding occupational health and safety necessitates a proactive approach
to managing operator physical fatigue. This study uses wearable devices and health
information to propose a real-time measurement and monitoring solution for operator
physical fatigue in operational environments. The Empatica EmbracePlus smartwatch
was used to quantify fatigue during simulated industrial tasks. Participants engaged
in repetitive tasks, while the device monitored vital indicators like heart rate, elec-
trodermal activity, and skin temperature. Self-reported fatigue levels were assessed
using the Borg scale to provide ground truth labels for the collected data. The acquired
dataset served as input for machine learning models to classify physical fatigue into
discrete levels, ranging from 2 to 5 distinct categories. The results highlight the efficacy
of the XGBoost algorithm in accurately classifying physical fatigue, demonstrating a
classification accuracy of 94.1% for five levels and 99.4% for three levels and the pulse
rate as the more reliable indicator of fatigue levels. Additionally, a Bayesian Neural
Network model, while producing similar results to the XGBoost algorithm, offers the
added advantage of providing credible intervals for its predictions. This research lays
the foundation for future deployments of the developed human performance model
in real-world industrial environments.

Keywords: Machine learning, Human performance modelling, Industry 4.0, Physical fatigue,
Physiological parameters, Wearable sensors

INTRODUCTION

Industry 4.0 is a disruptive trend that incorporates sophisticated technologies
such as IoT, AI, and robotics into industrial settings to improve automation,
analysis, andmaintenance efficiency (Javaid et al., 2021; Ghobakhloo, 2020).
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Nonetheless, despite the growing use of advanced technology and automa-
tion, operators are still critical components of modern industrial systems
(Romero et al., 2020). Unfortunately, the industrial setting has historically
placed a greater emphasis on process/product quality, thereby overlooking
the critical role of human operators (Bondarouk et al., 2020). Empirical
research has shed light on the importance of human factors (HF) in man-
ufacturing processes, finding links between quality deficiencies and negative
human consequences such as workload-induced weariness and injury-related
risk factors (Reiman et al., 2021). Consequently, there is a rising real-
ization of the need to focus and improve human elements in operations
systems to boost overall system performance and maintain higher quality
standards (Neumann et al., 2021). Workers in a variety of industries typi-
cally experience physical weariness because of doing physically demanding
and repeated jobs (Albarrán Morillo and Demichela, 2023). Lifting, push-
ing, tugging, and carrying big things require a lot of effort, which can lead to
eventual tiredness. The repetitious nature of these actions causes additional
strain on the body, resulting in physical weariness (Albarrán Morillo and
Demichela, 2023). Physical weariness considerably raises the likelihood of
human mistake and job mishaps (Yeow et al., 2014). Fatigue impairs work-
ers’ cognitive capacities and motor capabilities, making them more prone to
making mistakes and losing focus (Valentina et al., 2018). This decreased
vigilance and coordination can lead to mishaps such as slips, trips, and
falls, which are a major safety risk in a variety of work settings. Addition-
ally, physical weariness has a substantial impact on total work performance.
Workers that are fatigued are more likely to experience diminished produc-
tivity and efficiency (Mahmud Akter and Ahmad, 2011). Physical fatigue’s
effects might worsen with time, leading to more serious health consequences
(Balachander et al., 2014). These effects include chronic fatigue syndrome
(CFS), work-related musculoskeletal diseases (WMSD), and a reduction in
immune function. CFS is distinguished by persistent and profound fatigue
that does not improve with rest and is accompanied by a variety of phys-
ical and psychological symptoms (Lee et al., 2023). WMSD, on the other
hand, refers to a range of disorders affecting muscles, tendons, and sensitive
tissues caused by repetitive or intense physical activity, resulting in pain, lim-
ited mobility, and other symptoms (Lee et al., 2023). As a result, monitoring
physical exhaustion has become an essential component for early detection
(Meeus et al., 2007).

Even though exhaustion is a subjective sense, and the level of fatigue expe-
rienced by an individual varies based on factors such as overall health and
well-being, job demands, and circumstances, there is currently no perfect
way for quantifying physical fatigue. As a result, the most precise approach
of assessing physical exhaustion levels is currently being developed. Conduct-
ing questionnaire-based interviews is one way for assessing personal physical
weariness (Kumar, 2001). This approach is based on subjective evaluations
and may be prone to biases caused by an individual’s mood or willingness
to provide an accurate account of their exhaustion. To improve reliability,
objective measures are required. Physical weariness is intimately associated
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with the sympathetic nervous system (SNS), which can be assessed via physi-
ological signs (Okawa et al., 2019). Physical weariness can be assessed using
a variety of physiological measures, including heart activity, blood activity,
and skin reaction. Monitoring personal physiological signals with wireless
sensors allows for continuous tracking of physical exhaustion level.

In this study, we present a novel model for classifying physical fatigue in
different levels, integrating both objective and subjective measures.

The remainder of this work is arranged as follows. The next part describes
our human performance modeling technique, the experimental procedure,
and the data gathering and elaboration process. The experimental results
are reported in the next section. Finally, the essay discusses the findings and
conclusions, summarizes the limitations, and suggests future research paths.

HUMAN FATIGUE PROPOSED FRAMEWORK

The proposed methodology evaluates tiredness by simulating industrial
duties in a fitness setting (see Figure 1). Participants do physically demand-
ing activities such as pushing, tugging, picking up, bending, and lifting, which
are frequent in the factory environment. These activities need repetitive move-
ments and the use of physical force, mimicking real-world labor conditions.
The data for tiredness prediction is derived from the Empatica Embrace-
Plus bracelet, which offers real-time physiological signals depending on the
wearer’s physical activity level. The bracelet continually measures three key
components: pulse rate (PR), electrodermal activity (EDA), and temperature.
During the data collecting procedure in the fitness setup, the participants’
exhaustion levels are labelled with the Borg scale or Borg test (Borg, 1982).
This method allows individuals to subjectively rate their level of physical
exertion on a scale ranging from 6 (no exertion) to 20 (maximum exertion).

For a more in-depth exploration of the proposed framework, readers are
encouraged to refer to our previous article (AlbarránMorillo and Demichela,
2023).

Participants and Data Collection

The study included 33 healthy volunteers (21 men and 13 females) ranging
in age from 21 to 41 years, with a mean of 25.6 ± 4.4 years. With this sam-
ple size, we have nearly reached the desired statistical power of 80% (34
individuals), which is critical for assuring the reliability and validity of the
experimental findings (Serdar et al., 2021). People with current or previous
injuries, pain, discomfort, medical conditions, or those taking medications
were excluded from the initial screening questions (see Figure 1). The study
followed the Declaration of Helsinki standards. Prior to data collection, each
participant was given an informed consent form that contained extensive
information about the study, such as its nature, potential benefits, hazards,
and alternatives.
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Figure 1: Data collection procedure in the fitness setup.

Physical Fatigue Classification Models

A typical and useful strategy is to select a few algorithms that could be appro-
priate for the task at hand. Each algorithm is then trained, and the model
with the highest predicted accuracy is chosen as the final candidate. Accord-
ing to prior research, ensemble learning approaches such as Random Forest
(RF) and the boosting algorithm XGBoost are well-suited to addressing the
time-series structure of physiological data, resulting in more accurate and
reliable fatigue classification results (Anwer et al., 2022; Bustos et al., 2022).
Along with RF, we used J48 and logistic model tree (LMT), which are
tree-based algorithms comparable to RF but with different methods and fea-
tures. Furthermore, our literature analysis revealed that Naive Bayes (NB)
is widely employed in tiredness classification (Purnomo et al., 2020). To
give a fuller comparison, we incorporated the Tree-Augmented Naive Bayes
(TAN) method in our analysis. TAN is a modification of the classic NB
method that considers feature dependencies, perhaps making it better at
capturing complex correlations in physiological data. Finally, this research
introduces a unique aspect: the use of Bayesian Neural Networks (BNNs)
trained utilizingMarkov ChainMonte Carlo (Papamarkou et al., 2022). This
technique gives not only predictions but also the likelihood of correctness,
as well as reasonable intervals (confidence scores), allowing a robust and
complete study of the parameter landscape during the training process. As a
result, this approach can improve human interpretability, making the fatigue
categorization process more useful and insightful.

EXPERIMENTAL RESULTS

The datasets were analysed using various machine learning algorithms to
classify the data based on different levels of fatigue. The fatigue levels were
categorized using the scores from the Borg scale into two levels: low fatigue
(6-12) and high fatigue (13-20), three levels: low (6-12), moderate (13-16),
and high (17-20), and four levels: low (6-10), moderate (11-14), high (15-17),
and very high (18-20). The collected dataset was divided into 70% for train-
ing and 30% for testing. A mixed dataset approach was adopted, allowing
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samples from the same individual to be used for both training and testing. The
Weka software was utilized to conduct 10-fold cross-validation using three
classification algorithms: J48, LMT, and RF. k-fold cross-validation involves
dividing the dataset into k subsets of approximately equal size. The model
is then trained on k-1 of these subsets and tested on the remaining subset.
This process is repeated k times, each time using a different subset as the test
set. For the TAN algorithm, Hugin Expert software was utilized. Finally, the
XGBoost algorithm and BBNs were implemented using Julia software. Nor-
malization was used for each feature, ensuring a thorough evaluation of the
model’s performance across diverse participants.

Table 1 shows the accuracy of the algorithms employing 3 digital biomark-
ers, EDA, pulse rate and temperature.

Table 1. Algorithms and classification accuracy using PR, EDA and
temperature for 2, 3 and 4 physical fatigue levels.

Algorithm Classification Accuracy (%)

Levels 2 3 4

J48 85.9 81.6 78
LMT 85.7 80.6 76.2
RF 85.5 82.6 82.1
TAN 94.3 79.6 63.5
XGBoost 99.9 99.4 97.4

The classification accuracy for the J48 algorithm across 2, 3, and 4 physical
fatigue levels is 85.9%, 81.6%, and 78%, respectively. For the LMT algo-
rithm, the accuracy achieved for 2, 3, and 4 physical fatigue levels is 85.7%,
80.6%, and 76.2%, respectively. The RF algorithm achieved classification
accuracies of 85.5%, 82.6%, and 82.1% for 2, 3, and 4 physical fatigue clas-
sification levels. The TAN algorithm obtained accuracies of 94.3%, 79.6%,
and 63.5% for 2, 3, and 4 levels, respectively. Finally, the XGBoost algorithm
performed exceptionally well, achieving classification accuracies of 99.9%,
99.4%, and 97.4% for 2, 3, and 4 fatigue levels, respectively. The XGBoost
algorithm demonstrated the highest accuracy among all the tested algorithms,
achieving exceptional results in multi-level fatigue classification. By catego-
rizing fatigue into multiple levels, we sought to gain a deeper understanding
of individuals’ fatigue states during different activities and work tasks. The
XGBoost algorithm was chosen as the preferred method for the subsequent
data analysis steps.

Additionally, we evaluated whether combining multiple parameters
improved the overall classification accuracy (see Table 2). The fatigue clas-
sification was conducted with three and five levels, as these score ranges
demonstrated statistical significance, while the remaining levels did not
offer meaningful distinctions. For the five-level classification, we categorized
the Borg test scores as follows: low-fatigued (6-8), low-moderate (9-11),
moderate (12-14), high (14-17), and very high (18-20).
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Table 2. Classification accuracy (%) using XGBoost and inputs
PR, EDA and skin temperature individually and their
combinations.

Input Classification Accuracy (%)

Levels 3 5

EDA 53.5 50.4
Temperature 53.6 49.1
Pulse rate 99 92.1
EDA + Pulse rate 99.1 92.7
EDA + Temperature 53.8 50.2
Temperature + Pulse rate 99.1 91.2
All together 99.9 94.1

The results demonstrate that the combination of three sensors, EDA, pulse
rate, and temperature, achieved the best performance with an accuracy of
99.9% for the three levels classification and 94.1% for the five levels classi-
fication. When using a combination of two sensors, EDA and pulse rate, the
model achieved an accuracy of 92.7% for the five levels classification and
99.1% for the three levels classification. Similarly, combining temperature
and pulse rate resulted in an accuracy of 91.2% for the five levels classifica-
tion and 99.1% for the three levels classification. The using only the pulse
rate sensor showed excellent performance, achieving 99% accuracy for the
three levels classification and 92.1% for the five levels classification, even
outperforming the combination of pulse rate with temperature for the five
levels classification (91.2%). The robust performance of the pulse rate sen-
sor, even when used alone, highlights its potential as a reliable indicator of
physical fatigue. In contrast, the performance was significantly lower when
using only one sensor for EDA or temperature, or the combination of both,
achieving less than 54% accuracy for the three levels classification and less
than 51% accuracy for the five levels classification.

The authors introduce a novel algorithm using Bayesian Neural Networks
(BNNs) trainedwithMarkov ChainMonte Carlo (MCMC).The results show
impressive performance, especially for 3-level classification (see Table 3).
While the accuracy for the 5-level classification is slightly lower compared
to XGBoost, achieving 86.7% accuracy is still noteworthy. The method
also offers advantages in human interpretability, such as obtaining credible
intervals, which provide a measure of uncertainty for the model’s predictions.

Table 3. XGBoost and BBNs classification accuracy.

Input Classification accuracy (%)

Levels 3 5

XGBoost 99.9 94.1
BBNs 99.9 86.7
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DISCUSSION

The study reveals that the XGBoost algorithm has demonstrated exceptional
performance in classifying physical fatigue levels, with accuracy rates of
99.9% for three levels and 94.1% for five levels when combined with three
physiological parameters: EDA, pulse rate, and skin temperature. This out-
performs previous studies, which achieved classification accuracy of 96.5%
for four levels and 93.5% for the same classification (Anwer et al., 2022;
Bustos et al., 2022; Pinto-Bernal et al., 2021). The XGBoost algorithm has
demonstrated superior performance compared to RF and other tree-based
approaches in the realm of fatigue classification.

Pulse rate is a key finding in this study, as it is a more reliable indicator of
fatigue and less influenced by external factors. It is directly related to heart
activity and responsiveness to changes in exertion and stress levels, making
it a valuable tool for assessing fatigue. The study also found that using pulse
rate alone is sufficient for accurate fatigue prediction, and there is no statisti-
cal significance in incorporating additional sensors alongside pulse rate. This
has practical implications for various industries, sports training, healthcare,
and other fields where fatigue management is essential.

Lastly, to improve human interpretability for future real-world applica-
tions where fatigue predictions are crucial, we used a Bayesian Neural Net-
work (BBN) model trained with Markov Chain Monte Carlo (MCMC) (see
Table 3). The BBN-MCMC technique provides various benefits for under-
standing the model’s predictions and decision-making process. Unlike some
complicated machine learning algorithms, the BBN-MCMCmodel generates
credible intervals that serve as confidence scores for each prediction. With
credible intervals, users and stakeholders may have more faith in the model’s
outputs and make more educated decisions depending on the amount of cer-
tainty offered. Furthermore, the BBN-MCMC approach ensures a solution
for the model’s parameter space. This is especially useful since it guarantees
that the model’s predictions are not locked in local optima, so helping to a
more reliable and robust classification performance.

CONCLUSION AND FUTURE WORK

The proposed physical fatigue monitoring system is a significant advance-
ment in supporting everyday physical fatigue assessment. Utilizing a non-
intrusive smartwatch device, the system achieves high classification accuracy
of >99% for 3 levels and >86% for 5 levels. This research sets the stage for
practical applications in various industries, enabling real-time, non-intrusive
fatigue detection for improved health and safety outcomes. A potential use
for the physical exhaustion model may be to monitor assembly line work-
ers’ physical exertion to forecast and avoid injuries. Testing the physical
fatigue detection model on assembly lines is highly relevant due to repetitive
actions and heavy lifting, common in sectors like automotive, electronics,
and pharmaceuticals. The application of the model involves assessing data
and estimating injury risks for each operator. To enhance workplace safety,
the model aligns operators with workstations based on their projected injury



Wearable Technology and Machine Learning for Assessing Physical Fatigue in Industry 4.0 35

risk. Those with lower risks are assigned to physically demanding tasks, opti-
mizing their capabilities. Conversely, operators at higher risk are strategically
placed in less demanding positions, minimizing the potential for injuries.
Future research could incorporate external factors influencing operators’
fatigue levels, such as humidity, temperature, noise levels, lighting conditions,
ergonomics, shift timing and demographic factors. This could involve evalu-
ating the accuracy of classification, assessing computational capabilities, and
analysing the importance (gain) of each feature within the model.

The proposed physical fatigue monitoring system has promising results,
but it needs to address several limitations to ensure its practicality and reli-
ability in real-world applications. Data privacy and ethics are crucial in
industrial settings, as collecting physiological data from individuals raises
concerns about data protection, informed consent, and potential misuse. The
study used a specific dataset for training and testing, but the sample size may
be limited, affecting the generalizability of the models to broader populations
or different environments. Consequently, it is imperative to assess the model’s
generalizability or consider collecting a more extensive dataset. Obtaining
real-time performance in the model is critical for practical applications.
Real-time performance is crucial for practical applications, particularly in
promptly detecting fatigue. Enhancements in algorithms for faster processing
and reduced latency are vital for achieving instantaneous tiredness detection.
However, it is worth mentioning that the processing power required for the
BBNs method is ten times greater than that of other algorithms, posing a
challenge that must be addressed for effective real-time implementation.

Despite these limitations, this study is a significant step forward in the
development of physical tiredness monitoring systems.
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