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ABSTRACT

The clinical management of bedridden patients necessitates meticulous attention to
their respiratory health, as their constrained mobility significantly increases the risk
of respiratory complications. Considering the critical link between respiratory func-
tion and recovery outcomes, this research underscores the importance of monitoring
respiratory frequency and patterns as an essential aspect of care for these individu-
als. Diligent observation of respiratory parameters enables healthcare providers to
identify early signs of deterioration in respiratory health, allowing for timely inter-
vention and, consequently, a reduction in the incidence of serious complications. We
propose a platform based on noninvasive contactless Infrared thermography that ana-
lyzes respiratory frequency and patterns. With the help of volunteers, we conducted
an experiment to collect data for statistical treatment and modeling. Our results,
discussed in this work, substantiate the data collection approach and the selected
methodology.
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INTRODUCTION

Bedridden patients, due to their limited mobility and prolonged periods of
immobility, are at a heightened risk for developing complications that can
significantly impede their recovery process, with respiratory complications
being among the most critical to address. The immobilized state of these
patients not only predisposes them to pneumonia and atelectasis but also
contributes to a decline in the overall functionality of the respiratory system.
Hence, the clinical care of bedridden patients necessitates a comprehensive
approach, with proper observation and maintenance of respiratory health.
It posits that through early detection of alterations in respiratory param-
eters, healthcare professionals can intervene promptly, thus mitigating the
risk of severe respiratory complications and facilitating a smoother recovery
trajectory. Henceforth, proactive monitoring of respiratory frequency and
patterns is not just a preventative measure, but a vital practice that supports
the overall recovery process of bedridden patients and has pivotal role in a
comprehensive clinical care.
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In the preceding half-decade, the realm of Mobile Health (mHealth)
has witnessed a remarkable ascension, emerging as a pivotal force in the
transformation of healthcare delivery across the globe. This period has been
characterized by the rapid development and adoption of mobile technolo-
gies designed to enhance the accessibility, efficiency, and personalization of
healthcare services. This technological evolution has not only facilitated real-
time monitoring and management of chronic conditions but also significantly
improved the capacity for early disease detection and intervention. The inte-
gration of advanced analytics, artificial intelligence, and telemedicine into
mHealth platforms has further propelled the sector, enabling personalized
healthcare recommendations and remote patient-physician interactions. Con-
sequently, the last five years have indubitably solidified the role of mHealth as
an indispensable component of modern healthcare systems, heralding a new
era of healthcare that is both universally accessible and fundamentally aligned
with the needs of the digital age. Usually, mHealth platforms are based on
two main concepts: medical information collection and medical information
display.

Concerning medical information collection, we propose a monitoring plat-
form that employs non-invasive contactless Infrared thermography to collect
respiratory data and analyse a patient’s breathing frequency and pattern. To
protect the patients’ privacy and autonomy and allow for deployment on
diverse environments, such as home care, we employed low-resolution, low-
cost thermal sensors to collect patients real-time information. Our results
show that the platform and the modeling solution is reliable for long-term
respiratory frequency monitoring of regular patients, although a refinement
is required for intensive care units and operating rooms due to the strict
regulatory requirements of those environments.

Concerning medical information display, we are developing a second
iteration of the platform presented in this work to provide a data visual-
ization layer to help displaying and understanding the patient’s information
- considering that visual management in high-pressure medical environments
optimizes the workflow of nurses and caregivers, enhances patient recovery
outcomes and reduces the chances of oversight or errors (Arora et al., 2022;
Kuge et al., 2021; Enshaeifar et al., 2020). This new version of the platform
will address the above-mentioned required refinement of the modeling for
critical applications.

Section Contactless Data Acquisition discusses methods of respiratory fre-
quency assessment used in the literature. The design of the platform, sensor
deployment, replication information and data collection are shown on section
Building the Platform and Data Collection. Section Data Processing shows
the statistical treatment of the data and the mathematical modeling. Con-
clusion and future work are discussed on section Conclusion and Future
Work.

CONTACTLESS DATA ACQUISITION

This section presents a discussion of contactless data acquisition methods for
respiratory frequency estimation. We conducted a review of the related works
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on relevant databases such as, although not limited to, ACM Digital Library,
IEEE Xplore, NIH, PubMed and Springer Link.

Our review suggests that methods for contactless data acquisition
compatible with our approach are:

• Analysis of the difference between frames of a video;
• Monitoring the temperature of the air around the nostrils or mouth; and,
• Monitoring the movement of the thoracic cage with distance sensors.

Analysis of the Difference Between Frames of a Video

Digital images are sets of pixels organized spatially, where each pixel is usu-
ally represented by integer numbers that define its color, such as RGB cameras
that identify colors as three (Red, Green, Blue) integer components. IR ther-
mal cameras usually represent the temperature of each pixel with a single
integer. The variation of these values carries information about respiratory
frequency, which can be extracted by (i) Monitoring the variation in pixel
intensity over time with digital cameras or (ii) Monitoring the luminous flux
between pixels over time with digital cameras.

Each pixel is the result of the exposure of an optical sensor to radiation
emitted by a part of the captured object’s surface, and therefore will be an
average of the temperatures of that region. Even minor movements on the
observed surface cause variation in the temperature average of nearby pixels,
which can be used for the estimation of respiratory frequency. Works, such
as (Massaroni et al., 2019), use this method to monitor the variation in pixel
intensity over time.

The method of monitoring the luminous flux between pixels over time, less
common in the literature, is based on the capture of multiple images over time
and the analysis of their variation to obtain information about the captured
object’s surface. Works, such as (Queiroz et al., 2020), have employed this
method successfully.

Monitoring the Temperature of the Air Around the
Nostrils or Mouth

Infrared thermography technologies are designed to be sensitive to wave-
lengths larger than that of visible light, exceeding the capacity of human
vision; in particular, they capture the light that is radiated by the heat of
warmed bodies and allow for the perception of brightness differences in
the nostril area during breathing. The research conducted in (Murthy and
Pavlidis, 2006) exemplifies this methodology.

Monitoring the Movement of the Thoracic Cage With Distance
Sensors

During breathing, the variation in lung volume causes the thoracic cage to
expand, and there is a range of methods aimed at measuring the depth of this
expansion. The research conducted in (Massaroni et al., 2021) categorizes
these methods as active and passive.
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In active methods, specialized sensors emit signals that travel through the
air and are reflected by the captured object’s surface. The main approaches
are the use of RGB-D cameras - that capture a combination of a RGB image
and its corresponding depth image, better known as depth map - and infrared
ToF (Time-of-Flight) distance sensors based on LiDAR (Light Detection and
Ranging). The research conducted in (Soleimani et al., 2015) uses a ToF dis-
tance sensor to successfully measure the chest movement of 40 people for
comparison with spirometry data.

In passive methods, triangulation is employed to analyze images of the
captured object’s surface from different perspectives, to map the surface and
its variations. Studies, such as (Bernal et al., 2014), use this approach.

The IR thermal cameras used in the study are classified as passive devices.
We opted for low-resolution (32x24 pixels) sensors, not suitable for methods
that use triangulation to measure chest expansion. We chose the analy-
sis of the difference between frames of a video to estimate the respira-
tory frequency, as discussed on section Building the Platform and Data
Collection.

BUILDING THE PLATFORM AND DATA COLLECTION

On this Section, we describe the stages followed to prototype the platform
and implement the infrastructure for data collection.

Building the Platform

We employed the MLX90640 infrared thermal array sensor from Melexis,
notable for its compact form factor and cost-effectiveness, featuring a
32x24 pixel resolution. This sensor is distinguished by its ease of inte-
gration, facilitated by an I2C-compatible digital interface, and its capacity
for high-precision, non-contact temperature measurements. The MLX90640
offers a broad field of view (FoV) of 110◦x75◦ and a programmable
refresh rate ranging from 0.5Hz to 64Hz, ensuring versatility in various
applications.

The MLX90640, encapsulated within the M5 Thermal Unit by M5 Stack,
was interfaced with the M5 Core Capsule – an ESP32-S3-based micro-
controller from the same manufacturer. This controller is equipped with a
2.4GHz 802.11b/g/n WiFi transceiver and dual-mode Bluetooth® (classic
and low-energy), enabling efficient data acquisition and transmission. Data,
timestamped using NTP servers, was relayed to a remote real-time database.
Communication between these components was achieved using the I2C pro-
tocol via the Groove cables, connecting essential pins (VCC, GND, SDA, SCL)
provided by M5 Stack.

The importance of precisely capturing subtle movements in amplitude
curves, aimed at monitoring the body’s breathing during inhalation and
exhalation, has guided our approach to configure our device to operate
at the highest feasible sampling rate, considering the capabilities for com-
pression, real-time transmission, and database storage, achieving a rate of
16Hz. However, due to the particularity of each sensor frame being com-
posed of two sub-frames called ‘pages,’ the effective sampling rate adopted
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was 8Hz. Although this rate may seem modest for capturing the respira-
tory phenomenon with the desired precision, it is crucial to emphasize that
this sampling rate is sufficient to reconstruct the continuous signal from the
samples and detect variations of up to 240 breaths per minute according,
to the Nyquist-Shannon Sampling Theorem, thus exceeding the monitoring
requirements of an individual during sleep and validating the applicability of
our approach (Bai et al., 2023).

Data Collection

Using an individual lying on their back as a reference, we positioned the sen-
sor on the right side of the bed, at the height of the lower part of the sternum -
the xiphoid process - and parallel to the sternum itself. The image orientation
was set to landscape, providing coverage from the waist to the head and fully
encompassing the thoracic wall and the abdomen. We collected data in 3 dis-
tinct positions: supine (lying on the back, with the belly facing up), left lateral
decubitus (ventral side facing the sensor), and right lateral decubitus (back
facing the sensor). Considering the significant variability in the respiratory
rate over an individual’s lifetime (Bai et al., 2023), we used the adult breath-
ing rate during sleep as a reference, which can vary from 12 to 20 breaths
per minute (0.2 to 0.33Hz). Given this rate, we simulated breathing frequen-
cies of 0.1, 0.2, 0.3, 0.4, and 0.5Hz, covering a wide range of frequencies to
improve the model’s robustness. The data collection window was limited to
60 seconds, with intervals between each collection, in order to avoid the onset
of hypoventilation or hyperventilation symptoms. A metronome was used to
ensure the accuracy and consistency of the simulated frequency, generating
samples with constant respiratory frequencies.

Noise Treatment and ROI Definition

Given the low-resolution and the accuracy range of IR the thermal sensor,
which varies between ±0.5◦C and ±4◦C depending on the frame area, we
only monitored temperature variations at the edges of the individual’s body.
This approach focus on the observation of the movements of the thoracic wall
during breathing (De Groote et al., 1997) - the expansion and contraction of
the rib cage in the lateral and ventral directions. Thus, it became necessary
to establish a Region of Interest (ROI) to limit the observed area, thereby
avoiding the processing of areas that do not reflect respiratory movements.

The definition of a ROI based on a rectangular boundary box proved inef-
fective, as it does not conform well to the curves of the chest and abdomen,
nor is it robust to user movements, such as those that may occur during an
episode of obstructive apnea. Moreover, adopting fixed thresholds could lead
to inconsistent results, as minute variations occur regularly in ambient tem-
perature. Therefore, we developed a dynamic mask to focus exclusively on the
edges of the individual’s body in the images. The algorithm used is based on
Otsu’s method (Otsu, 1979) to binarize the image, differentiating between the
foreground (the individual’s body) and the background (the environment).
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To refine the resulting edge, and mitigate noise in areas of low accuracy
and regions that provide little information about the individual’s respira-
tory rate, several additional steps were implemented. The mask’s tolerance
is determined by the dilation kernel, which can be adjusted to accommo-
date movements of different amplitudes or different sensor placements. The
suppression of peripheral zones is crucial for noise reduction, as these areas
are identified in the IR thermal sensor’s datasheet as prone to significant
distortions.

In addition to discarding the pixels of the regions prone to noise and strate-
gically positioning the sensor to improve the collected data quality, the time
series used for Fourier analysis consists of the average pixel luminosity in
the ROI. Assuming that the noise of the ROI pixels are IID (Independently
and Identically Distributed) with a mean of zero, the Law of Large Numbers
ensures that the data is robust against sensor fluctuations.

DATA PROCESSING AND FORECASTING

On this Section, we describe the statistical treatment of the data and the
mathematical modeling.

After ROI definition and the noise treatment process discussed on section
Building the Platform and Data Collection, the resulting data is a uni-
dimensional time series. This data, consisting of uniformly frequent breaths,
is subsequently processed using Discrete Fourier Transform (DFT) for fre-
quency space analysis and signal analysis through band-pass filtering (BPF).
To ensure stability for data analysis in the frequency space we employed ADF
tests with a generic critical value of 5%.

The data, when analyzed in the frequency domain via DFT, convey infor-
mation regarding the intensity and frequency of motion of each element
captured by the thermal camera within the ROI. Subsequently, we fore-
cast using the frequency associated with the highest Power Spectral Density
(PSD), while adhering to the BPF, as the respiratory frequency is antici-
pated to be the primary feature within the dataset. This methodology not
only enhances interpretability but also provides a natural means of evalu-
ating its significance: it is expected that the frequencies of the time series
exhibit a single dominant peak, with secondary peaks being considerably less
pronounced.

Effectiveness of the Method and Significance of the Data

Figures 1 and 2 illustrate the data extracted from the movement of the tho-
racic cage viewed in the frequency domain. The first figure compares the
quality of the data acquired in each position in terms of noise and promi-
nence of the most significant frequency, while the second plot demonstrates
the stability of the method by applying it to data across a wide range of
respiratory rates.
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Figure 1: Comparing significance of data collected with the individual in different
positions, with selected BPF as reference.

It is evident that collecting data with the camera aligned parallel to the ster-
num is preferable, exhibiting a prominent peak intensity and minimal noise.
Collecting data with the camera directed towards the ventral side – corre-
sponding to the left lateral decubitus – has been demonstrated as feasible, as
despite having significantly higher noise compared to the former, the region
delimited by the BPF region remains stable. However, data collected with
the camera positioned towards the back – corresponding to the right lateral
decubitus – has shown an absence of useful respiratory information.
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Figure 2: Forecasting the respiratory frequency of the data collected, with selected BPF
as reference.

The transformation of supine data using DFT has successfully extracted
the desired features of the respiratory process across all collected respiratory
frequencies, thereby attesting the robustness of the method and confirming
the suitability of the chosen ROI.

CONCLUSION AND FUTURE WORK

According to (Young et al., 2002), it is estimated that in the United States, the
annual costs associated with obstructive sleep apnea, including direct medical
expenses, loss of productivity, and costs related to accidents, are in the range
of billions of dollars. It is estimated that 80% of obstructive sleep apnea cases
are undiagnosed. Obstructive sleep apnea is associated with an increased risk
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of hypertension, stroke, and cardiovascular diseases, conditions that further
increase the real annual cost imposed by sleep apnea. Whereas in Brazil,
where this work was developed, a study (Tufik et al., 2010) indicated that
the prevalence of obstructive sleep apnea is approximately 40% in men and
26% in women, affecting more than 80% of obese men and 52% of women
in this condition.

This ongoing work introduced an IR thermal imaging process for esti-
mating respiratory frequency. However, we aim to help detect and diagnose
sleep apnea using contactless data collection that (i) protects user privacy
and (ii) has low cost to enable mass adoption by the Public Health Sys-
tem. Future initiatives will focus on aligning the platform’s technological
capabilities with its clinical integration, leveraging on a recently established
partnership with Pedro Ernesto and Gaffrée e Guinle College Hospitals for
pilot studies. Through the integration of this solution with dashboard and
dynamic reporting methodologies, we plan on assisting healthcare profes-
sionals in making informed decisions about patients current and historical
respiratory patterns to enhance quality of life and help mitigate the risk of
respiratory complications.
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