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ABSTRACT

In modern production systems, prioritizing the safety and well-being of human oper-
ator is crucial. Industry 5.0 responds to this need by giving significant importance to
the Human Factor (HF) and ergonomics. Our work introduces a semi-automatic tool
for Compositive Lifting Index (CLI) calculation for risk detection during multi-task man-
ual lift jobs using the Azure Kinect depth cameras named AzKCLI. We conducted 62
simulations of industrial tasks in our laboratory with a risk assessment from both AzK-
CLI and expert ergonomic judgment. Findings reveal a strong agreement between
assessments, proposing a novel semi-automatic tool that offers a more objective,
economically efficient, and a rapid evaluation of multi-task manual lifting jobs, thus
contributing to enhance workplace safety in the Industry 5.0 era.
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INTRODUCTION

Ergonomics encompasses the theoretical and foundational comprehension
of human behaviour and performance as intentional interactions within
sociotechnical systems. It involves applying this understanding to design
interactions within real word (Wilson, 2000). In contemporary contexts,
ergonomics plays a pivotal role in ensuring safety across various work envi-
ronments. Additionally, ergonomic considerations contribute to increased
productivity and improved working conditions by replacing traditional meth-
ods with new technologies (Fayomi et al., 2021).

The influence of technology is vital for advancing and refining ergonomic
techniques within organizations (Canas et al., 2011). The advent of Industry
4.0 introduced new technologies that merged the physical and virtual worlds
through cyber-physical systems and interconnected humans, machines, and
devices via the Internet of Things. Subsequently, Industry 5.0 reintroduced
the essential dimension of a “human/value-centred Industry 4.0”. Unlike
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its predecessor, Industry 5.0 is not solely technology-driven but focuses on
huma-centricity, ecological considerations, and social benefits. The technolo-
gies within Industry 5.0 are integral to system design, aiming to enhance
sustainability on bot social and ecological fronts (Müller, 2020).

Specifically, there is a crucial need to concentrate on designing an optimal
work environment that prioritize the well-being of operators and emphasizes
improving ergonomics to mitigate the occurrence of Work-related Muscu-
loskeletal Disorders (WMSDs). Ergonomics plays a key role in achieving this
goal. Addressing injuries or disorders related muscles, nerves, tendons, joints,
and spinal discs. To reduce the risk level associated with working posture and
movements related to manual tasks, it is essential to evaluate risks during pre-
production phase when workplaces are designed (Wang et al., 2023). Various
observational methods are employed for ergonomic risk assessment based on
different activities and types of physical effort. Widely used methods include
Rapid Upper Limb Assessment (RULA) (Mcatamney & Corlett, 1993), Rapid
Entire Body Assessment (REBA) (Hignett & Ergonomist, 2000), National
Institute of Occupational and Safety (NIOSH) Lifting Equation (Waters et al.,
1993), Ovako Working posture Analyzing System (OWAS) (Karhu et al.,
1977), Occupational Repetitive Action Index (OCRA Index) (Occhipinti,
1998).

Contemporary risk evaluation during pre-production phase involves the
use of Virtual Reality (VR) and Motion Capture (MoCap) systems. Specif-
ically, employing a kinematic suit to capture movements of individual
body parts is deemed appropriate (Battini et al., 2018). Collecting data
through direct physiological measurements, such as goniometers, force sen-
sors, accelerometers, electromyography, and optical markers, provides a high
level of accuracy and more objective information (Seo et al., 2014). Joint
angles and body posture can be obtained not only through direct measure-
ments but also through indirect methods such as Kinect range cameras and
computer vision-based approaches (Kačerová et al., 2022).

In the work environment, numerous lifting tasks involve a variety of lifting
activities. If detailed information is required for engineering modifications,
the multiple-task approach becomes necessary. However, analysing multi-
task manual lifting jobs poses greater challenges as each task need to be
assessed individually (Waters et al., 2021).

Azure Kinect depth camera was already used for ergonomic scope:
(Coruzzolo et al., 2022) proposed an automatic calculation of RULA
through the depth camera, comparing results with those obtained through
RGB-Based machine vision algorithm; (Lolli et al., 2022) used Azure Kinect
to evaluate the ergonomic risk reduction with a height-adjustable mesh truck
for picking activities.

Our contribution in this study involves the creation of a semi-automatic
tool designed for assessing ergonomic risk associated with multi-task man-
ual lifting jobs. Named AzKCLI, our tool utilizes the Composite Lifting
Index (CLI) (Waters et al., 1993) combined with a depth camera for data
acquisition. Specifically, we employed the Microsoft Azure Kinect for data
acquisition and the automatic detection of human body joints. Subsequently,
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our tool computes angles and vectors to derive the CLI and assess the
corresponding risk level.

To the best of our knowledge, our tool represents the initial application for
the semi-automatic calculation of the CLI for the risk assessment of multi-
task manual lifting. We conducted tests using 62 acquisitions with different
lifting routines. Each acquisition underwent evaluation by AzKCLI and an
ergonomic expert to validate the effectiveness of our novel tool.

The paper is organized as follows: Section 1 details the procedure for
conducting the semi-automatic CLI evaluation with AzKCLI while Section
2 outlines the experiment setup, Section 3 presents our results, and Section 4
discusses the conclusion and outlines future research directions.

AZKCLI

The NIOSH Lifting Equation (Waters et al., 1993) is suitable for analysing the
ergonomic risk associated with a single-task manual lifting job, characterized
by consistent task variables throughout the job. In such instances, the impact
of tasks on strength, localized muscle fatigue, or whole-body fatigue remains
consistent throughout the shift. Conversely, multi-task manual lifting jobs
are defined by substantial differences in task variables. In these cases, the
NIOSH Lifting Equation proves to be overly restrictive, and the Composite
Liftin Index is a more suitable alternative (Waters et al., 2021).

The first guidelines for analysing the physical demands of multi-task
manual lifting jobs were introduced in (NIOSH, 1981), incorporating the
assessment of the combined effects of all tasks. The novel approach, pre-
sented by (Waters et al., 1994), relies on the Composite Lifting Index (CLI),
where the cumulative demands of the job are calculated as the sum of the
largest Single Task Lifting Index (STLI) and the incremental increases in the
CLI as each subsequent task is incorporated. The incremental CLI increase
for a specific task is determined as the difference between the Lifting Index
(LI) for that task at the cumulative frequency and the LI for that task as its
actual frequency. This is done exploiting STLI of each task obtained dividing
the average load weight for that task by the respective Single-Task Recom-
mended Weight Limit (STRWL) and the Frequency-Independent Lifting Index
(FILI) obtained for each task dividing the maximum load weight for that task
by the respective Frequency Independent Weight limit (FIRWL). Given STLI
and FILI of each task CLI can be calculated as shown in (1) and (2) (Waters
et al., 1994).

CLI = STLI1 + 1LI (1)
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We developed AzKCLI using Python 3.8, creating an application that
semi-automatically computes the CLI by leveraging the Azure Kinect Body
Tracking SDK (Microsoft, 2021). An algorithm relying on Convolutional
Neural Network (CNNs) is incorporated into the depth camera to identify
32 joints in the 3D space. Each acquisition undergoes pre-processing to con-
vert the camera’s output format to the input format compatible with our tool.
Then, there is a data cleaning process to remove incomplete or empty infor-
mation. Subsequently, our tool can plot the skeleton in the space for each
frame in the input file, as shown in Figure 1.

Figure 1: Graphical representation of skeleton from Azure Kinect body hierarchy.

To compute LI and STLI for each task, various geometric functions and
additional elements such as points, vectors, and planes were developed.
During this phase, we referenced to AzKNIOSH (Lolli et al., 2022) as the
calculation of multipliers was identical. The functions involved include:

• Determining the midpoint between two three-dimensional points and
providing the coordinates of the midpoint.

• Calculating the three-dimensional Euclidean distance between two points.
• Retrieving coefficients for a plane that passes through a specified point

and has a given vector as the normal vector.
• Computing the coordinates of a point on a specific vector, given the value

of one of the coordinates.
• Calculating the angle in degrees between two three-dimensional vectors.

In order to calculate AzKCLI, certain information needs to be manually
entered as input:

• Number of tasks carried out in the specific job.
• For each task, the frame at which the task starts.
• For each task, the frame at which the task ends.
• Weight of the lifted load in kilograms for each task.
• Lifting frequency for each task, measured in liftings per minute.
• Duration of each task.
• Grip assessment categorized as “good”, “fair,” or “poor.”
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Initially, the tool calculates the FIRWL (Waters et al., 1994) for each activ-
ity, utilizing the activity-specific variables and setting the frequency multiplier
to 1. It is worth noting that he FIRWL calculation follows the same proce-
dure as the Recommended Weight Limit (RWL) in the case of NIOSH Lifting
Equation, with the crucial distinction that the frequency multiplier is fixed
at 1. Subsequently, it is possible to calculate STRWL. This involves multiply-
ing the corresponding FIRWL by the appropriate frequency multiplier. Then,
to obtain FILI for each tasl, the load weight for each activity is divided by
the corresponding FIRWL. Similarly, the STLI, is obtained by dividing the
load weight for each task by the corresponding STRWL. Once all the neces-
sary measures have been calculated, they are utilized in Equation 1 and 2 to
obtain a unified measure of the risk level associated with all the tasks per-
formed in that job. The AZkCLI output is an Excel file where all the results
are saved.

EXPERIMENT SETTING

To validate AzKCLI, we conducted simulations of an industrial environment
in laboratory setting, replicating various multi-task manual lifting scenar-
ios performed by two volunteers. The aim of the experiment was to ensure
heterogeneity in the validation process. The experimental setup included an
Azure Kinect for recording, a PC Alienware, an industrial table measuring
150x80x90 (h) cm, a shelving unit sized 2000x500x1200 (h) cm for loading
and unloading boxes from different shelves (illustrated in Figure 2), an indus-
trial pallet 120x80 cm, an industrial mesh truck 120x100x80(h) cm, one
container 60x40 cm weighted 0.5 kg and different lifted boxes with following
characteristics:

• Three boxes sized 35x22x13 (h) cm, weighted respectively 2, 3 and 5 kg.
• One box sixed 15x15x10(h) cm, weighted 1.5 kg.
• Five boxes sized 60x40x40(h) cm, each one weighted 12 kg.

Figure 2: Graphical representation of the shelving used in the experiment.

62 acquisitions were analysed both by an ergonomist expert and AzKCLI.
The acquisitions represented different industrial routines that an operator
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performs to move different loads from an origin destination to the final loca-
tion. The start and the end frame of each activity, considered in the manual
assessment, coincide with those taken into account to run AzKCLI. To ensure
a more accurate evaluation and reliable measurements, the ergonomist was
provided with all relevant information regarding the handled load, support
planes for the loads, and the characteristics of the monitored subject. Once
the necessary measurements for calculating the multipliers were obtained, the
professional utilized conversion tables (Waters et al., 1994), distinguishing
their approach from the automatic tool, which relies on specific equations.

To replicate industrial activity, the tasks were structured as follows: volun-
teer lifted boxes from various levels. Subsequently, they scanned the code on
each box and positioned it on either the mesh truck or the pallet, as instructed.
Some boxes are designated to be put in a container before the destination
placement. Figure 3 illustrated a depiction of the tasks.

Figure 3: Representation of analysed performed tasks.

Manual inputs were entered both in AzKCLI and provided to the expert,
encompassing:

• The number of tasks performed in the specific job, which varied for each
acquisition.

• For each task, the frame indicating the task’s start.
• For each task, the frame marking the task’s end.
• The weight of the lifted load for each task, set at 1 kg per box.
• Lifting frequency for each task, measured in liftings per minute, with each

lift executed one a minute.
• A job duration of 8 hours.
• A grip assessment categorized as “good”.
• Volunteer is male falling within an age range of 18 to 45 years, resulting

in a set load constant of 25 kg.
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RESULTS

The 62 videos captured by Azure Kinect have been converting from .mkv files
to.json files, to give as input for the semi-automatic Composite Lifting Index
carried out with AzKCLI. While, the expert ergonomist, analysed the .mkv
with observational method. Results are shown in Figure 4.

Figure 4: Graphical representation of results comparing AzKCLI with ergonomic expert
evaluation.

Statistical analysis was done to demonstrate the tool reliability. The mean
difference between CLI calculated by AzKCLI and ergonomist judgement is
0.058 with a standard deviation of 0.156. Specifically, the found agreement
between the two methods is 77%. Finally, we discretized the two CLI in four
categories to apply linear weighted Cohen’s Kappa coefficient of agreement
(Fleiss et al., 1969). The Cohen’s Kappa coefficient results is a value of 0.81
that corresponds to an almost perfect agreement using the Landis and Koch
Scale (Landis & Koch, 1977). Statistical analysis shown that AzKCLI is a reli-
able option to evaluate the ergonomic risk associated with multi-task manual
lifting jobs.

CONCLUSION

In this work, a new semi-automatic evaluation of CLI was presented.
Through the detection of 32 body joints position provided by the depth cam-
era Azure Kinect, required measurements were determined to calculate the
final CLI. We compared AzKCLI with the evaluation of an ergonomic expert
to demonstrate the tool reliability. Specifically, following conclusions were
drawn:

• Almost perfect agreement was highlighted between AzKCLI’s results and
ergonomic expert’s assessment.

• The usage of AzKCLI enables to punctually detect distances used for CLI
calculations.
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• Some AzKCLI’s inputs cannot be automatically detected, and it could be
useful a neural network to completely automatize the process.

• Major limitation of AzKCLI is due to the depth camera. It is an optical
sensor and unavoidability occlusions risk compromising data collection.
In order to avoid this problem, future research could include data collected
with multiple Kinect.

Extensions of this work can include both the comparison of results with
other methods for ergonomic risk assessment and the integration of a neu-
ral network to automatically determined number of liftings, frequency and
duration of the task, beginning and end of the lift.
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