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ABSTRACT

Air traffic controllers sometimes fail to detect visual warnings due to limited attention
resources. This challenge would even be exacerbated by the increasing complexity
of visual data in future digital tower integrations. Detection failures (DF) manifest in
three primary types: ordinary blindness (OB), look but fail to see (LBFTS) error, and
misinterpretation (MI), each resulting from disruptions in the detection process stages
and necessitating specific countermeasures. This study employs machine learning and
eye-tracking in a simulated air traffic control (ATC) environment to identify and differ-
entiate types of DF. Eye movements of 26 participants were tracked across 108 OB,
109 LBFTS, and 95 MI instances to ATC warnings. Seven machine learning models,
including three basic and four advanced tree-based models, were assessed for DF
recognition. Results found that the gradient boosting decision tree exhibited superior
performance with 74% accuracy in four-detection-type recognition, particularly in rec-
ognizing OB and LBFTS. Additionally, correct detection and MI are more challenging
but still effectively recognized, with correct detection better identified by k-Nearest
Neighbour, and MI by light gradient boosting machine. These findings demonstrate
the feasibility of real-time gaze-based DF recognition in ATC and offer valuable insights
for ATC management in enhancing visual warning detection and aviation safety.
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Detection failure types

INTRODUCTION

In air traffic control (ATC), automatic warning systems are vital for air traffic
controllers (ATCOs) to identify potential conflicts, delivering visual warn-
ings through a human-computer interface (Zhang et al., 2019). However,
ATCOs fail to detect visual warnings sometimes due to their limited attention
resources (Ruskin et al., 2021). This difficulty would be further amplified by
the increased complexity of visual information from the integration of digital
towers. A variety of studies indicate that detection failures (DF) could occur
in many ways throughout the human monitoring process, which can be sum-
marized into three key types: ordinary blindness (OB), look but fail to see
(LBFTS) error, and misinterpretation (MI) (Bruder and Hasse, 2020; Wang
et al., 2023; Ruskin et al., 2021). These types are grounded in disruptions to
Endsley’s widely recognized situation awareness theory, which encompasses
perception, comprehension, and projection (Endsley, 1995). Perception refers
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to the detection of stimulus in the environment, comprehension involves
synthesizing this information to understand the current situation, and pro-
jection is the ability to foresee future states of the environment based on this
understanding. These stages collectively contribute to effective detection and
decision-making, particularly in dynamic contexts where rapid response to
changes is crucial.

The conceptual definition of DF types, as illustrated in Figure 1, high-
lights how each DF type corresponds to a specific disruption in Endsley’s
key cognitive stages. Each type has distinct causes and requires specific
countermeasures (Causse et al., 2016). Specifically, OB, where warnings
are completely overlooked, suggests a need for improved warning displays
(Hollnagel, 2000). LBFTS, arising from gaps in cognitively processing per-
ceived warnings, indicates an overload of cognitive capacity and necessitates
a reduction in task load (Wang et al., 2022).MI occurs when operators notice
but misunderstand warnings and make an erroneous decision, pointing to the
need for enhanced personnel training (Bruder and Hasse, 2020). Hence, rec-
ognizing DF types to the visual warnings should be valuable for developing
efficient interventions accordingly.

Recent studies have shown notable eyemovement patterns linked to the DF
phenomenon (Li et al., 2023; Mengtao et al., 2023), revealing the potential
of eye-tracking-enabled DF recognition. Metrics like fixations, saccades, and
pupil responses are identified as reliable indicators of understanding atten-
tion shifts and cognitive load (Li et al., 2019). Fixation duration, reflecting
cognitive processing depth, along with frequent fixations in relevant areas
during attention failures and prolonged gaze on distractors, offer insights
into attentional dynamics (Bodala et al., 2017; Bruder and Hasse, 2020).
Saccade amplitude relates to scanning strategies (Bodala et al., 2016), while
pupil diameter changes suggest cognitive effort variations, especially under
DF conditions (Moacdieh et al., 2023). Additionally, first view time analy-
sis in various contexts aids in comprehending visual responses and cognitive
workload during DF (Ruscio et al., 2015; Li et al., 2022). However, to what
extent can the eye movement features be achieved in recognizing DF types in
a safety-critical ATC context remains unexplored.

This study addresses the gap by employing multiple machine learning
methods and eye-tracking features for the recognition of DF types in sim-
ulated ATC settings. An empirical study was conducted using the ‘Endless
ATC’ simulation platform, involving 26 participants who monitored airspace
within an automated warning system. Additionally, we employed and com-
pared seven machine learning methods for DF type recognition, all of which
have been extensively adopted in previous literature for their proven effec-
tiveness (Li et al., 2024; Shams et al., 2023). The three basic models,
support vector machine (SVM), k-Nearest Neighbour (kNN), and multilayer
perceptron (MLP), are effective in high-dimensional spaces and straightfor-
ward classification tasks (Cristianini and Shawe-Taylor, 2000). Advanced
tree-based ensemble models like random forest, eXtreme Gradient Boost-
ing (XGBoost), gradient boosting decision tree (GBDT), emerging since the
early 2000s, are recognized for their robustness and enhanced capabilities
in handling complex datasets (Natras et al., 2022). Notably, light gradi-
ent boosting machine (LightGBM), introduced by Microsoft in 2017, stands
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out for its exceptional efficiency and performance, particularly with large
datasets (Ke et al., 2017).

In summary, this study offers a robust scientific approach for key DF-type
recognition within ATC warning systems, using eye-tracking data in simu-
lated ATC scenarios. It provides key foundations for ATC management in
selecting appropriate countermeasures against DF types, thereby enhancing
visual warning detection, and ultimately improving aviation safety.

Figure 1: The definitions of DF types to the unexpected warnings.

METHOD

Participants and Apparatus

In a simplified experimental study conducted at The Hong Kong Polytechnic
University, we designed a simulation to approximate the general model of
ATC monitoring tasks. The participants were university students who pos-
sessed normal or corrected-to-normal vision within the age range of 20 to 30
years (M = 25.65, SD = 2.69), and consented to partake following ethical
approval (HSEARS20211117002). The apparatus included a 27-inch moni-
tor paired with a Gazepoint 3 eye tracker to precisely capture eye movement
data, essential for understanding the participants’ engagement with the task.

Experiment Procedures

All participants were introduced to the Endless ATC platform, a simplified
ATC environment. They were tasked with monitoring virtual airspace, iden-
tifying aircraft types by their labels, and responding to a set of predefined
warnings—each designed to reflect potential ATC alerts.

The experiment proceeded through a structured sequence of phases: an
introductory briefing on objectives and methods, a 40-minute training ses-
sion to familiarize participants with aircraft types and warnings, a practice
phase to familiarize themselves with the simulation’s interface and tasks, a
break and eye tracker calibration, and the formal supervision task with an
experimental interface shown in Figure 2. In the task, participants watched a
pre-recorded 50-minute video of aircraft control, tracking aircraft and identi-
fying successful takeoffs and landings. They also need to recognize and record
eight specific warning types which were displayed for 10 seconds each. The
10-second warning display time was chosen as participants usually noticed
and recorded warnings within 8 seconds during practice sessions, making
this timeframe sufficient for perception. Overall, each participant encoun-
tered a total of 189 warnings. The simulation, while a generalized model of



Vigilant Air Traffic Control: Gaze-Based Recognition of Detection Failures 15

ATC tasks without the full complexity of actual ATC contexts, was sufficient
to induce DF, thus serving the study’s aim to understand general monitoring
behaviours and responses to potential aerial conflicts.

Figure 2: The experimental interface and the tasks of participants.

DF Type and Gaze Feature Measurement

In the experiment, detection failures were categorized based on subjects’ gaze
and response to warnings. OB was identified when there was no fixation on
the warnings, indicating a complete miss. LBFTS occurred when subjects fix-
ated on the warnings but failed to record them. MI errors were noted when
subjects fixated on and recorded the warnings, but the recording was incor-
rect. Correction detection (CD) was achieved when subjects fixated on the
warnings and recorded them accurately. Eye movement data were collected
for each of the above four detection types, as shown in Figure 3. In cases of
CD and MI, where subjects perceived and recorded the warnings, eye move-
ments were tracked from the warning’s appearance to its recording. For OB
and LBFTS instances, where warnings were either perceived or responded
to, eye movements were collected for the entire 10-second warning display
duration.

Figure 3: The eye movement data collection of different DF types during the
experiment.
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This study focused on analysing eye movement patterns in response to
various detection types. Key variables included the first view time (FVT) in
seconds, fixation count (FC) and duration (FD) within the area of interest
(AOI), i.e. warning display area, blink frequency (BF), mean saccade ampli-
tude (MSA), and mean pupil diameter (MPD) in response to warnings. MPD
was further broken down into mean left (MLPD) and right (MRPD) pupil
diameters. Specifically, the first view time for the OB type is standardized at
10 seconds, reflecting their non-responsiveness to warnings. In contrast, the
first view time for the other three detection types is determined by the time
from the onset of the warning to the first viewing. To normalize individual
differences in pupil diameter and blink frequency in the collected eye move-
ment data, we used baseline normalization. The baseline for pupil diameter
and blink frequency was set during the thirty seconds following the first five
minutes of the experiment. Task-evoked pupillary responses were determined
by comparing the MPD and BF at warning onset with this baseline.

Data Analysis

In the data analysis, we employed seven regression models for DF type recog-
nition, each with unique strengths. The basic models included SVM, known
for handling high-dimensional spaces; kNN, effective in pattern recognition
due to its simplicity; and MLP, a neural network adept at learning non-
linear relationships. Additionally, we utilized advanced tree-based ensemble
models: random forest, which enhances accuracy through multiple decision
trees; XGBoost, recognized for its speed and efficiency in structured data;
GBDT, focusing on correcting previous tree errors sequentially; and Light-
GBM, optimized for large data sets and high-speed processing. These models
were chosen for their proven classification capabilities and were systemati-
cally compared to determine the optimal approach for DF type recognition in
our context. The input features and outputs are the seven eye movement fea-
tures and the classification of four detection types, respectively. In assessing
our models, we used four metrics: accuracy, precision, recall, and F1 score.
Besides, we applied 5-fold cross-validation to enhance the reliability of our
results, reducing overfitting by training and testing on varied data segments.

RESULTS

The study recorded eye movements during 108 OB, 109 LBFTS, and 95 MI
instances to ATCwarnings. The performance analysis of sevenmachine learn-
ing models for classifying eye-tracking data into four detection types is shown
in Table 1. The table demonstrates GBDT emerges as the top-performing
model with uniform scores of 0.74 in accuracy, precision, recall, and F1 score,
reflecting a high level of four-type classification efficacy. Random Forest
and LightGBM models also exhibit substantial efficacy, particularly Ran-
dom Forest, which parallels GBDT in accuracy, precision, and recall. Among
the simpler basic models, MLP surpass SVM and kNN, the latter trailing
with metrics around 0.65. This analysis underscores the advanced models’
enhanced ability to navigate the intricacies of multi-class eye-tracking data
classification.
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Following the global results assessment, a comparative analysis of model
performances across detection categories (i.e. CD, OB, LBFTS, and MI) is
conducted, as shown in Figure 4. Higher prediction performance in classi-
fying a detection type indicates more distinguishable eye movement features,
revealing howmodels uniquely respond to each type’s distinctive eye-tracking
features. Figure 4 reveals a marked variance in model efficacy across these
detection categories. Notably, the models exhibit a varied degree of pro-
ficiency across the four detection types. OB stands out with the highest
prediction accuracy, followed by LBFTS. Conversely, the assessment of CD
andMI presents more complex scenarios. A detailed analysis of the prediction
outcomes for each category will be conducted sequentially.

Table 1. Performance of the compared models for classifying eye-tracking data into
four detection types.

SVM kNN MLP Random Forest XGBoost GBDT LightGBM

Accuracy 0.67 0.65 0.69 0.74 0.67 0.74 0.73
Precision 0.68 0.65 0.69 0.74 0.66 0.74 0.73
Recall 0.67 0.66 0.69 0.74 0.67 0.74 0.73
F1 score 0.66 0.64 0.67 0.73 0.66 0.74 0.73

In the OB category, characterized by an absence of fixation on warnings,
models, especially four advanced tree-based models, showcase exceptional
accuracy, with precision and recall scores reaching up to 1.00. This remark-
able performance is indicative of the distinctive eye movement patterns in OB,
where the lack of fixations and prolonged first view time offer clear markers
for classification (Hergovich and Oberfichtner, 2016).

In LBFTS, distinct eye movement patterns emerge, despite its similarities
with CD andMI regarding fixations on warnings. The performance of GBDT
and Random Forest models in LBFTS is noteworthy: GBDT achieves a preci-
sion, recall, and F1 score of 0.82, while Random Forest records a precision of
0.76, recall of 0.86, and F1 score of 0.81. These results highlight the unique
eye movement patterns in LBFTS, contrasting with the focused attention in
CD and the attentional inaccuracies in MI. This distinction is consistent with
previous research indicating inattentional blindness correlates with fewer fix-
ations on stimuli, increased pupillary diameter, and less efficient attention
allocation (Moacdieh et al., 2023; Richards et al., 2012). The results highlight
the significance of eye movements as key indicators for recognizing LBFTS,
demonstrating their pivotal role in DF classification.

The MI and CD categories, characterized by their respective incorrect and
correct recordings of warnings, pose distinct analytical challenges. Compar-
atively, MI demonstrates superior predictive outcomes over CD, exemplified
by the MLP model’s prediction score of 0.88 for MI, surpassing CD’s high-
est score of 0.59. However, in terms of recall metric, CD outperforms MI;
the MLP model achieves a recall of 0.81 for CD, whereas MI’s highest recall
is 0.52, achieved by the Random Forest model. A comprehensive evalua-
tion of the models’ effectiveness, as assessed through the F1 score, reveals
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that CD’s seven model outcomes are more robust than those for MI. Specifi-
cally, the kNN model for CD attains the highest F1 score of 0.67, compared
to MI’s peak score of 0.58 by the lightGBM model. These findings suggest
that CDs are generally more discernible than MIs, supporting the feasibil-
ity of distinguishing them through eye movement analysis, despite inherent
challenges.

Figure 4: A comparative analysis of model performances across four detection
categories.
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CONCLUSION

In summary, this study effectively employed machine learning models to
identify three DF types in response to warnings, utilizing eye movement
data gathered from a specifically simulated ATC context. In a global anal-
ysis of machine learning models, gradient boosting decision tree stand out
for their effectiveness in classifying four detection types. This demonstrated
the feasibility for real-time gaze-based recognition systems in ATC, partic-
ularly in promptly identifying instances where warnings are missed (OB)
or observed but not acted upon (LBFTS). In contrast, CD and MI cate-
gories are more challenging to classify, with less but still effective prediction
accuracy. The k-Nearest Neighbour model demonstrates heightened profi-
ciency in recognizing CD, while light gradient boosting machine perform
better in identifying MI. The study’s approach and findings have significant
implications for enhancing visual warning detection and improving human-
computer interaction in aviation, ultimately contributing to safer and more
efficient ATC operations.

The study’s limitations include a small participant pool and the use of a
generalized supervision simulation rather than an authentic ATC environ-
ment, which may limit the findings’ applicability. However, this preliminary
work lays the groundwork for more realistic scenario-based experiments in
the future. Focusing mainly on eye-tracking metrics, further research could
benefit from incorporating broader physiological data like electroencephalo-
gram.
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